Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When \(E = 100V,R = 10ohm,L = 1h\)the system of differential equations for the currents\({i_1}(t)\) and \({i_3}(t)\) in the electrical network given in Figure\(9.4.3\) is

\(\begin{aligned}{*{20}{c}}{\frac{{d{i_1}}}{{dt}} = - 20{i_1} + 10{i_3} + 100}\\{\frac{{d{i_3}}}{{dt}} = 10{i_1} - 20{i_3}}\end{aligned}\)

where \({i_1}(0) = 0\)and\({i_3}(0) = 0\). Use the \(RK4\)method to approximate \({i_1}(t)\)and \({i_3}(t)\)at \(t\). Use \(h = 0.1\). Use a numerical solver to graph the solution for \(0 \le t \le 5\). Use the graphs to predict the behavior of\({i_1}(t)\) and\({i_3}(t)\) as\(t \to \infty \).

Figure\(9.4.3\)Network in Problem \(6\).

Short Answer

Expert verified

The value of the current \({i_1}(t)\)and \({i_3}(t)\)at \(t = 5\)is \(4.4425,10.2457\)respectively.

Step by step solution

01

Define Method.

To cancel out lower-order error terms, the RK4 technique of integrating differential equations uses a trial step at the middle of an interval. When paired with a clever adaptive step-size procedure, this method is relatively simple and resilient, making it an excellent general option for solving differential equations. The formula used in this method is,

\({y_{n + 1}} = {y_n} + \frac{1}{6}{k_1} + \frac{1}{3}{k_2} + \frac{1}{3}{k_3} + \frac{1}{6}{k_4} + O\left( {{h^5}} \right)\)

02

Find the value of the currents.

We are given the first order differential equation,

\(\begin{aligned}{*{20}{c}}{\frac{{d{i_1}}}{{dt}} = - 20{i_1} + 10{i_3} + 100}\\{\frac{{d{i_3}}}{{dt}} = 10{i_1} - 20{i_3}}\end{aligned}\)

Using \(RK4\)method using the step \(h = 0.1\)along with the conditions we can have the value of current.

Find the approximate values using the formula,

\(\begin{aligned}{*{20}{c}}{{i_{1(n + 1)}} = {i_{1(n)}} + \frac{h}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)}\\{{i_{3(n + 1)}} = {i_{3(n)}} + \frac{h}{6}\left( {{m_1} + 2{m_2} + 2{m_3} + {m_4}} \right)}\end{aligned}\)

We have to find the constants \(\left( {{k_1},{k_2},{k_3}{\rm{\;,}}{k_4}} \right){\rm{\;}}\)and \(\left( {{m_1},{m_2},{m_3}{\rm{,\;}}{m_4}} \right)\)at \(n = 0{\rm{\;,\;}}h = 0.2\).

Since we have \({i_{1(0)}} = 0{\rm{\;,\;}}{i_{3(0)}} = 0\)we get,

\(\begin{aligned}{*{20}{c}}{{k_1} = f\left( {{t_0},{i_{1(0)}},{i_{3(0)}}} \right)}\\{ = - 20{i_{1(0)}} + 10{i_{3(0)}} + 100}\\{ = - 20 \times 0 + 10 \times 0 + 100}\\{ = 100}\\{{m_1} = g\left( {{t_0},{i_{1(0)}},{i_{3(0)}}} \right)}\\{ = 10{i_1} - 20{i_3}}\\{ = 10 \times 0 - 20 \times 0}\\{ = 0}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_2} = f\left( {{t_0} + \frac{1}{2}h,{i_{1(0)}} + \frac{1}{2}h{k_1},{i_{3(0)}} + \frac{1}{2}h{m_1}} \right)}\\{ = - 20\left( {{i_{1(0)}} + \frac{1}{2}h{k_1}} \right) + 10\left( {{i_{3(0)}} + \frac{1}{2}h{m_1}} \right) + 100}\\{ = - 20\left( {0 + \frac{1}{2} \times 0.1 \times 100} \right) + 10\left( {0 + \frac{1}{2} \times 0.1 \times 0} \right) + 100}\\{ = - 100 + 0 + 100}\\{ = 0}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{m_2} = g\left( {{t_0} + \frac{1}{2}h,{i_{1(0)}} + \frac{1}{2}h{k_1},{i_{3(0)}} + \frac{1}{2}h{m_1}} \right)}\\{ = 10\left( {{i_{1(0)}} + \frac{1}{2}h{k_1}} \right) - 20\left( {{i_{3(0)}} + \frac{1}{2}h{m_1}} \right)}\\{ = 10\left( {0 + \frac{1}{2} \times 0.1 \times 100} \right) - 20\left( {0 + \frac{1}{2} \times 0.1 \times 0} \right)}\\{ = 50 - 0}\\{ = 50}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_3} = f\left( {{t_0} + \frac{1}{2}h,{i_{1(0)}} + \frac{1}{2}h{k_2},{i_{3(0)}} + \frac{1}{2}h{m_2}} \right)}\\{ = - 20\left( {{i_{1(0)}} + \frac{1}{2}h{k_2}} \right) + 10\left( {{i_{3(0)}} + \frac{1}{2}h{m_2}} \right) + 100}\\{ = - 20\left( {0 + \frac{1}{2} \times 0.1 \times 0} \right) + 10\left( {0 + \frac{1}{2} \times 0.1 \times 50} \right) + 100}\\{ = 0 + 25 + 100}\\{ = 125}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{m_3} = g\left( {{t_0} + \frac{1}{2}h,{i_{1(0)}} + \frac{1}{2}h{k_2},{i_{3(0)}} + \frac{1}{2}h{m_2}} \right)}\\{ = 10\left( {{i_{1(0)}} + \frac{1}{2}h{k_2}} \right) - 20\left( {{i_{3(0)}} + \frac{1}{2}h{m_2}} \right)}\\{ = 10\left( {0 + \frac{1}{2} \times 0.1 \times 0} \right) - 20\left( {0 + \frac{1}{2} \times 0.1 \times 50} \right)}\\{ = 0 - 50}\\{ = - 50}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{k_4} = f\left( {{t_0} + h,{i_{1(0)}} + h{k_3},{i_{3(0)}} + h{m_3}} \right)}\\{ = - 20\left( {{i_{1(0)}} + h{k_3}} \right) + 10\left( {{i_{3(0)}} + h{m_3}} \right) + 100}\\{ = - 20(0 + 0.1 \times 125) + 10(0 + 0.1 \times ( - 50)) + 100}\\{ = - 250 - 50 + 100}\\{ = - 200}\end{aligned}\)

\(\begin{aligned}{*{20}{c}}{{m_4} = g\left( {{t_0} + h,{i_{1(0)}} + h{k_3},{i_{3(0)}} + h{m_3}} \right)}\\{ = 10\left( {{i_{1(0)}} + h{k_3}} \right) - 20\left( {{i_{3(0)}} + h{m_3}} \right)}\\{ = 10(0 + 0.1 \times 125) - 20(0 + 0.1 \times ( - 50))}\\{ = 125 + 100}\\{ = 225}\end{aligned}\)

After that when \(n = 0\), substitute the value of constants to get the value of \({i_{1(1)}}{\rm{,\;}}{i_{3(1)}}\).

\(\begin{aligned}{*{20}{c}}{{i_{1(1)}} = {i_{1(0)}} + \frac{h}{6}\left( {{k_1} + 2{k_2} + 2{k_3} + {k_4}} \right)}\\{ = 0 + \frac{{0.1}}{6}[100 + 2(0) + 2(125) + ( - 200)]}\\{ = 0 + \frac{{0.1}}{6} \times (150)}\\{ = 0 + 2.5}\\{ = 2.5}\end{aligned}\)\(\)

and

\(\begin{aligned}{*{20}{c}}{{i_{3(1)}} = {i_{3(0)}} + \frac{h}{6}\left( {{m_1} + 2{m_2} + 2{m_3} + {m_4}} \right)}\\{ = 0 + \frac{{0.1}}{6}[0 + 2(50) + 2( - 50) + 225]}\\{ = 0 + \frac{{0.1}}{6} \times (225)}\\{ = 0 + 3.75}\\{ = 3.75}\end{aligned}\)

\(RK4\)Method

\(h = 0.1\)

\({x_n}\)

\({k_1} + 2{k_2} + 2{k_3} + {k_4}\)

\({m_1} + 2{m_2} + 2{m_3} + {m_4}\)

\({y_n}\)

\({u_n}\)

\(0.00\)

\(150.00\)

\(225.00\)

\(0.00\)

\(0.00\)

\(0.10\)

\(18.750\)

\(121.88\)

\(2.500\)

\(3.750\)

\(0.20\)

\( - 44.531\)

\(97.266\)

\(2.8125\)

\(5.7813\)

\(0.30\)

\(59.501\)

\(106.27\)

\(2.0703\)

\(7.4023\)

\(0.40\)

\(82.833\)

\(64.340\)

\(3.0620\)

\(9.1734\)

\(0.50\)

\(4.4425\)

\(10.2457\)

Hence the values of the current \({i_{1(5)}} = 4.4425{\rm{\;,\;}}{i_{3(5)}} = 10.2457\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free