Chapter 9: Q4E (page 385) URL copied to clipboard! Now share some education! In Problems 3 and 4 repeat the indicated problem using the RK4 method. First use h=0.2 and then use h=0.1 .Approximatey(1.2) , wherey(x) is the solution of the given initial-value problem..x2y''−2xy'+2y=0,y(1)=4,y'(1)=9Find the analytic solution of the problem and compare the actual value of y (1.2) with y2. Short Answer Expert verified The solution of the problem calculated using RK4 method is and the approximated value for y(0.2) is y2=6.00 when h=0.1 and 6.00 when h=0.2. Step by step solution 01 Define RK4 Method To cancel out lower-order error terms, the RK4 technique of integrating differential equations uses a trial step at the middle of an interval. When paired with a clever adaptive step-size procedure, this method is relatively simple and resilient, making it an excellent general option for solving differential equations. The formula used in this method is,yn+1=yn+16k1+13k2+13k3+16k4+Oh5 02 Find the first order differential equations. We have the second order of differential equation,x2y''−2xy'+2y=0(1)with initial conditionsy(1)=4,y'(1)=9and we have to approximate y(1.2)using RK4 method as the following technique.First we have to assume that,y'=u(a)Then differentiate with respect to we have the followingy''=u'(b)Substitute (a),(b) in equation (1).x2u'−2xu+2y=0(c)Then from (a), (c) we can have the system of first order differential equations.y'=f(x,u,y)=uu'=g(x,u,y)=2xu−2x2yHence the first order differential equations areu'=g(x,u,y)=2xu−2x2y,y'=f(x,u,y)=u 03 Find the value of y1,u1 for h=0.2 Using RK4 method using the step h=0.2along with the conditionsx0,y0=(1,4),x0,u0=(1,9)we can have,Find the approximate values using the formula,yn+1=yn+h6k1+2k2+2k3+k4(1a)un+1=un+h6m1+2m2+2m3+m4(2a)We have to find the constants k1,k2,k3,k4and m1,m2,m3,m4at n=0,h=0.2.Since we have u0=9,y0=4we get,k1=fx0,u0,y0=u0=9m1=gx0,u0,y0=2x0u0−2x2y0=21×9−212×4=18−8=10k2=fx0+12h,u0+12hm1,y0+12hk1=u0+12hm1=9+12×0.2×10=9+1=10m2=gx0+12h,u0+12hm1,y0+12hk1=2x0+12hu0+12hm1−2x0+12h2y0+12hk1=21+12×0.29+12×0.2×10−21+12×0.224+12×0.2×9=21.1(10)−2(1.1)2(4.9)=18.18182−8.09917=10.0826k3=fx0+12h,u0+12hm2,y0+12hk2=u0+12hm2=9+12×0.2×10.0826=9+1.00826=10.00826m3=gx0+12h,u0+12hm2,y0+12hk2=2x0+12hu0+12hm2−2x0+12h2y0+12hk2=21+12×0.29+12×0.2×10.0826−21+12×0.224+12×0.2×10=21.1(10.00826)−2(1.1)2(5)=18.19684−8.26446=9.9324k4=fx0+h,u0+hm3,y0+hk3=u0+hm3=9+0.2×9.9324=9+1.9865=10.9865m4=gx0+h,u0+hm3,y0+hk3=2x0+hu0+hm3−2x0+h2y0+hk3=21+0.2(9+0.2×9.9324)−2(1+0.2)2(4+0.2×10.00826)=21.2(10.9865)−2(1.2)2(6.001652)=18.3108−10.00275=8.308After that when n=0 , substitute the value of constantsy1=y0+h6k1+2k2+2k3+k4=4+0.26[9+2(10)+2(10.00826)+10.9865]=4+0.26×(60.00112)=4+2.00=6andu1=u0+h6m1+2m2+2m3+m4=9+0.26[10+2(10.0826)+2(9.9324)+8.308]=9+0.26×(58.338)=9+1.9446=10.9446 04 Find the values of y2 for h=0.1 k1=fx0,u0,y0=u0=9m1=gx0,u0,y0=2x0u0−2x2y0=21×9−212×4=18−8=10k2=fx0+12h,u0+12hm1,y0+12hk1=u0+12hm1=9+12×0.1×10=9+0.5=9.5m2=gx0+12h,u0+12hm1,y0+12hk1=2x0+12hu0+12hm1−2x0+12h2y0+12hk1=21+12×0.19+12×0.1×10−21+12×0.124+12×0.1×9=21.05(9.5)−2(1.05)2(4.45)=18.09524−8.07256=10.02268k3=fx0+12h,u0+12hm2,y0+12hk2=u0+12hm2=9+12×0.1×10.02268=9+0.71=9.50113m3=gx0+12h,u0+12hm2,y0+12hk2=2x0+12hu0+12hm2−2x0+12h2y0+12hk2=21+12×0.19+12×0.1×10.02268−21+12×0.124+12×0.1×9.5=21.05(9.50113)−2(1.05)2(4.475)=18.09740−8.11791=9.97949k4=fx0+h,u0+hm2,y0+hk2=u0+hm3=9+0.1×9.97749=9+0.99775=9.99775m4=gx0+h,u0+hm3,y0+hk3=2x0+hu0+hm3−2x0+h2y0+hk3=21+0.1(9+0.1×9.99775)−2(1+0.1)2(4+0.1×9.97949)=21.1(9.99977)−2(1.1)2(4.99795)=18.18141−8.26107=9.92034y1=y0+h6k1+2k2+2k3+k4=4+0.16[9+2(9.5)+2(9.50113)+9.99775]=4+0.16×(57.00)=4+0.95=4.95u1=u0+h6m1+2m2+2m3+m4=9+0.16[10+2(10.02268)+2(9.97949)+9.92034]=9+0.16×(59.9247)=9+0.9987=9.9987After that we can find the value of x and u using other constants as shown in the table below. Then we get the value of y2=6.00. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!