Chapter 9: Q1E (page 381)
Find the analytic solution of the initial-value problem in Example 1 . Compare the actual values of \({\bf{y}}\left( {{\bf{0}}.{\bf{2}}} \right),{\rm{ }}{\bf{y}}\left( {{\bf{0}}.{\bf{4}}} \right),{\rm{ }}{\bf{y}}\left( {{\bf{0}}.{\bf{6}}} \right),\)and \({\bf{y}}\left( {{\bf{0}}.8} \right)\)with the approximations \({\bf{y}}\left( {{\bf{0}}.{\bf{2}}} \right),{\rm{ }}{\bf{y}}\left( {{\bf{0}}.{\bf{4}}} \right),{\rm{ }}{\bf{y}}\left( {{\bf{0}}.{\bf{6}}} \right),\)and \({{\bf{y}}_4}.\)
Short Answer
The approximation value of \(y\left( {0.2} \right){\rm{, y}}\left( {0.4} \right){\rm{, y}}\left( {0.6} \right)\)and \(y\left( {0.8} \right)\) are \(1.02140000\),\(1.09181796\),\(1.22210646\)and \(1.42552788\)