Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 7-12 use the Runge-Kutta method to approximate x(0.2)and y(0.2). First useh=0.2 and then use h=0.1 . Use a numerical solver and h=0.1to graph the solution in a neighborhood of t=0.

localid="1668176373600" x'+y'=4tx'+y'+y=6t2+10x(0)=3,     y(0)=1

Short Answer

Expert verified

hy1x10.20.0927051.973960.10.45272.4727

Step by step solution

01

Consider the equations and the conditions

The equations and the initial conditions are,

x'+y'=4tx'+y'+y=6t2+10x(0)=3,     y(0)=1

Add the equations.

y'=2t+3t2+5y2

Subtract the equations.

x'=2t3t25+y2

02

Compute the constants

Consider h=0.2,t=0

The values are,

k1=f(t0,x0,y0)=2t+3t2+5y2=0+0+512=5.5m1=g(t0,x0,y0)=2t3t25+y2=005+12=5.5

localid="1668176399555" k2=ft0+12h,x0+12hm1,y0+12hk1=2t+12h+3t+12h2+512y+12hk1=2(0.1)+3(0.01)+5+0.225=5.455m2=gt0+12h,x0+12hm1,y0+12hk1=2t+12ht3t+12h25+12y+12hk1=2(0.1)3(0.01)50.225=5.055

localid="1668176389048" k3=ft0+12h,x0+12hm1,y0+12hk1=2t+12h+3t+12h2+512y+12hk2=2(0.1)+3(0.01)+5+0.22725=5.457m3=gt0+12h,x0+12hm1,y0+12hk1=2t+12ht3t+12h25+12y+12hk2=2(0.1)3(0.01)50.22725=5.057

localid="1668176408424" k4=ft0+12h,x0+12hm1,y0+12hk1=2t+12h+3t+12h2+512y+12hk3=2(0.1)+3(0.01)+5+0.22715=5.45715m4=gt0+12h,x0+12hm1,y0+12hk1=2t+12ht3t+12h25+12y+12hk3=2(0.1)3(0.01)50.22715=5.05715

03

Compute the equations

Substitute the values of variables in the equation.

y1=y0+h6k1+2k2+2k3+k4y1=1+0.26(5.5+2(5.455)+2(5.457)+5.45715)y1=0.0927

x1=x0+h6m1+2m2+2m3+m4x1=1+0.26(5.5+2(5.055)+2(5.057)5.05715)x1=1.97396

04

Compute the constants

Consider h=0.1,t=0

The values are,

k1=f(t0,x0,y0)=2t+3t2+5y2=0+0+512=5.5m1=g(t0,x0,y0)=2t3t25+y2=005+12=5.5

localid="1668176436143" k2=ft0+12h,x0+12hm1,y0+12hk1=2t+12h+3t+12h2+512y+12hk1=2(0.05)+3(0.0025)+5+0.3625=5.47m2=gt0+12h,x0+12hm1,y0+12hk1=2t+12ht3t+12h25+12y+12hk1=2(0.05)3(0.0025)50.3625=5.27

localid="1668176446761" k3=ft0+12h,x0+12hm1,y0+12hk1=2t+12h+3t+12h2+512y+12hk2=2(0.05)+3(0.0025)+5+0.36325=5.470m3=gt0+12h,x0+12hm1,y0+12hk1=2t+12ht3t+12h25+12y+12hk2=2(0.05)3(0.0025)50.36325=5.27

localid="1668176454482" k4=ft0+12h,x0+12hm1,y0+12hk1=2t+12h+3t+12h2+512y+12hk3=2(0.05)+3(0.0025)+5+0.36325=5.457m4=gt0+12h,x0+12hm1,y0+12hk1=2t+12ht3t+12h25+12y+12hk3=2(0.05)3(0.0025)50.22715=5.057

05

Compute the equations

Substitute the values of variables in the equation.

y1=y0+h6k1+2k2+2k3+k4y1=1+0.16(5.5+2(5.47)+2(5.470)+5.457)y1=0.4527

x1=x0+h6m1+2m2+2m3+m4x1=3+0.16(5.5+2(5.27)+2(5.27)5.057)x1=2.4727

y1=0.4527,x1=2.4727

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Problems3 and4repeat the indicated problem using theRK4method. First useh=0.2and then useh=0.1.

Approximatey(0.2), whereis the solution of the given initial-value problem.

.y''4y'+4y=0,y(0)=2,y'(0)=1

Find the analytic solution of the problem and compare the actual value ofy(0.2)withy2.

Use Euler’s method to approximatey(1.2), wherey(x)is the solution of the given initial-value problem.

.x2y''2xy'+2y=0,y(1)=4,y'(1)=9

wherex>0. Useh=0.1. Find the analytic solution of the problem and compare the actual value ofy(1.2)withy2.

In Problems \(5 - 8\)use the Adams-Bashforth-Moulton method to approximate \(y(1.0)\), where \(y(x)\) is the solution of the given initial-value problem. First use \(h = 0.2\)and then use \(h = 0.1\).Use the \(RK4\) method to compute \({y_1},{y_2}\)and \({y_3}\).

\(y' = y + \cos x,y(0) = 1\).

In Problems \(3\) and \(4\)use the Adams-Bashforth-Moulton method to approximate \(y(0.8)\), where \(y(x)\) is the solution of the given initial-value problem. Use \(h = 0.2\)and the \(RK4\) method to compute \({y_1},{y_2}\)and \({y_3}\).

\(y' = 4x - 2y,y(0) = 2.\)

When \(E = 100V,R = 10ohm,L = 1h\)the system of differential equations for the currents\({i_1}(t)\) and \({i_3}(t)\) in the electrical network given in Figure\(9.4.3\) is

\(\begin{aligned}{*{20}{c}}{\frac{{d{i_1}}}{{dt}} = - 20{i_1} + 10{i_3} + 100}\\{\frac{{d{i_3}}}{{dt}} = 10{i_1} - 20{i_3}}\end{aligned}\)

where \({i_1}(0) = 0\)and\({i_3}(0) = 0\). Use the \(RK4\)method to approximate \({i_1}(t)\)and \({i_3}(t)\)at \(t\). Use \(h = 0.1\). Use a numerical solver to graph the solution for \(0 \le t \le 5\). Use the graphs to predict the behavior of\({i_1}(t)\) and\({i_3}(t)\) as\(t \to \infty \).

Figure\(9.4.3\)Network in Problem \(6\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free