Chapter 5: Q6E (page 228) URL copied to clipboard! Now share some education! In Problem 3, suppose the mass is released from an initial position x(0)=x0with the initial velocityx'(0)=1. Use a numerical solver to estimate an intervala≤x0≤bfor which the motion is oscillatory. Short Answer Expert verified The solution is an oscillatory one at-0.8≤x0≤1.1 Step by step solution 01 To estimate the interval We haved2xdt2+2x-x2=0 , x(0)=x0 and x'(0)=1Our aim is to use a numerical solver, to find an intervala≤x0≤b, at which the motion is an oscillatory one, wherex0 is the initial position.From Problem 3, We found that the motion is an oscillatory one at x0=1, wherex0=1is below the equilibrium point(x=0) . We need to find the maximum value x0, for which the solution is an oscillatory one. We try different values forx0until we reach a solution, forx0, at which the solution is not oscillatory. And we find the followingIn[1]:=NDSolve[{x"[t]+2x[t]-x[t]2=0,x[0]=1,x'[0]=1},x[t],{t,0,14}]Out[1]={{x[t]→InterpolatingFunctionDomain:{{0.,14.}}Output:scalarIn[2]:=NDSolve[{x"[t]+2x[t]-x[t]2=0,x[0]=1.1,x'[0]=1},x[t],{t,0,14}]Out[2]={{x[t]→InterpolatingFunctionDomain:{{0.,14.}}Output:scalarIn[2]:=NDSolve[{x"[t]+2x[t]-x[t]2=0,x[0]=1.2,x'[0]=1},x[t],{t,0,14}]Out[3]={{x[t]→InterpolatingFunctionDomain:{{0.,5.16.}}Output:scalar 02 The two sets of the initial condition We plot them, yieldsln[5]:=Plot[{Evaluate[x[t]/.%1],Evaluate[x[t]/.%2],Evaluate[x[t]/.%3]},{t,0,5},PlotLegends→{"x0=1","x0=1.1","x0=1.2"}]Therefore, we haveb=1.1Above the equilibrium pointUsing the same analysis, we try the following values forX0.In[6]:=NDSolve[{x"[t]+2x[t]-x[t]2=0,x[0]=-1,x'[0]=1},x[t],{t,0,14}]Out[6]={{x[t]→InterpolatingFunctionDomain:{{0.,4.63.}}Output:scalarIn[7]:=NDSolve[{x"[t]+2x[t]-x[t]2=0,x[0]=-0.9,x'[0]=1},x[t],{t,0,14}]Out[7]={{x[t]→InterpolatingFunctionDomain:{{0.,5.2.}}Output:scalarOut[8]={{x[t]→InterpolatingFunctionDomain:{{0.,14.}}Output:scalarIn[8]:=NDSolve[{x"[t]+2x[t]-x[t]2=0,x[0]=-0.8,x'[0]=1},x[t],{t,0,14}]Plotting them, yieldsln[5]:=Plot[{Evaluate[x[t]/.%6],Evaluate[x[t]/.%7],Evaluate[x[t]/.%8]},{t,0,5},PlotLegends→{"x0=-1","x0=0.9","x0=0.8"}] 03 Final Answer Therefore, we havea=-0.8 . Yields the interval, at which the solution is an oscillatory one to be-0.8≤x0≤1.1The solution is an oscillatory one at-0.8≤x0≤1.1 Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!