Consider the second order linear differential equation of LRC series circuit as,
L(d2q/dt2) +R(dq/dt)+q/C=E(t) ..... (1)
(5/3)(d2q/dt2) +10(dq/dt)+30q=300
(5)(d2q/dt2) +30(dq/dt)+90q=900
(d2q/dt2)+6(dq/dt)+18q=180 ..... (2)
Thus, the linear second-order differential equation is (d^2q/dt^2)+6(dq/dt)+18q=180.
m2+6m+18=0
m=[-6±(36-4 (1) (18))1/2] /2
=[-6±(-36)1/2] /2
[-6± i6] /2
=3± i3
Thus, the complementary function is,
qc(t)=e-3t(c1cos3t+c2sin3t)
Use the method of undetermined coefficients to find a particular solution.
Assume particular solution as,
qp=A
Thus,
d2qp/dt2=6(dqp/dt)+18qp=180
Substitute, dqp/dt=0, and d2qp/dt2 =0 in the above equation.
0+6(0)+18qp=180
18qp=180
qp=180 /80
qp=10
Thus, the solution is,
q(t)=qc+qp
Therefore, the general solution of above differential equation is,
q(t)=e-3t [c1cos3t+c2sin3t]+10 ..... (3)
Differentiate q(t) with respect to t.
q'(t)=e-3t [-3c1cos3t-3c2sin3t-3c1sin3t+3c2cos3t]
q'(t)=e-3t [-3c1+3c2)cos3t-(3c2+3c1) sin3t] ..... (4)
Substitute the current i(t)=q'(t) in the equation (4).
i(t)=e-3t [-3c1+3c2)cos3t-(3c2+3c1) sin3t]