Chapter 5: Q30RP (page 234)
Spring Pendulum The rotational form of Newton’s secondlaw of motion is:The time rate of change of angular momentum about a point isequal to the moment of the resultant force (torque).In the absence of damping or other external forces, an analogueof (14) in Section 5.3 for the pendulum shown in Figure 5.3.3is then
(a) When m and l are constant show that (1) reduces to (6) ofSection 5.3.
(b) Now suppose the rod in Figure 5.3.3 is replaced with aspring of negligible mass. When a mass m is attached toits free end the spring hangs in the vertical equilibriumposition shown in Figure 5.R.4 and has length l0. When the spring pendulum is set in motion we assume that themotion takes place in a vertical plane and the spring is stiffenough not to bend. For t . 0 the length of the spring isthen lstd 5 l0 1 xstd, whereis the displacement from theequilibrium position. Find the differential equation for thedisplacement angledefined by (1).
Short Answer
(a) The equation is , its solution is , and the interval defined is .
(b) The equation is , its solution is , and the interval defined is .