Chapter 5: Q27E (page 196)
In Problems 13-32 use variation of parameters to solve the given nonhomogeneous system.
\(27.{X^\prime } = \left( {\begin{array}{*{20}{r}}0&1\\{ - 1}&0\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}0\\{\sec t\tan t}\end{array}} \right)\)
Short Answer
The general solution of \({X^\prime } = \left( {\begin{array}{*{20}{r}}0&1\\{ - 1}&0\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}0\\{\sec t\tan t}\end{array}} \right)\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{c}}{\cos t}\\{ - \sin t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\sin t}\\{\cos t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{\cos t}\\{ - \sin t}\end{array}} \right)t + \left( {\begin{array}{*{20}{c}}{ - \sin t}\\{\sin t\tan t}\end{array}} \right) - \left( {\begin{array}{*{20}{l}}{\sin t}\\{\cos t}\end{array}} \right)\ln |\cos t|\)