Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 13-32 use variation of parameters to solve the given nonhomogeneous system.

\(27.{X^\prime } = \left( {\begin{array}{*{20}{r}}0&1\\{ - 1}&0\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}0\\{\sec t\tan t}\end{array}} \right)\)

Short Answer

Expert verified

The general solution of \({X^\prime } = \left( {\begin{array}{*{20}{r}}0&1\\{ - 1}&0\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}0\\{\sec t\tan t}\end{array}} \right)\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{c}}{\cos t}\\{ - \sin t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\sin t}\\{\cos t}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{\cos t}\\{ - \sin t}\end{array}} \right)t + \left( {\begin{array}{*{20}{c}}{ - \sin t}\\{\sin t\tan t}\end{array}} \right) - \left( {\begin{array}{*{20}{l}}{\sin t}\\{\cos t}\end{array}} \right)\ln |\cos t|\)

Step by step solution

01

Variation of parameters for nonhomogeneous linear systems:

Parameter variation is a generic approach for identifying a specific solution of a differential equation by substituting the constants in the solution of a related (homogeneous) equation with functions and defining these functions so that the original differential equation is fulfilled.

02

Find the characteristic equation of the coefficient matrix:

We have

\({X^\prime } = \left( {\begin{array}{*{20}{r}}0&1\\{ - 1}&0\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}0\\{\sec t\tan t}\end{array}} \right)\)

where

\(A = \left( {\begin{array}{*{20}{r}}0&1\\{ - 1}&0\end{array}} \right)\)

Now, we find the characteristic equation of the coefficient matrix,

\(\det (A - \lambda I) = 0\;\;\; \to \left| {\begin{array}{*{20}{c}}{0 - \lambda }&1\\{ - 1}&{0 - \lambda }\end{array}} \right| = 0\)

\({\lambda ^2} + 1 = 0\)

\({\lambda ^2} = - 1\)

\(\lambda = \pm i\)

so our eigenvalues are\({\lambda _1} = i\), and\({\lambda _2} = \overline {{\lambda _1}} = - i\).

03

Find the eigenvector and a corresponding solution vector:

For\({\lambda _1} = i\):

\((A - (i)I\mid 0) = \left( {\begin{array}{*{20}{c}}{0 - i}&1&0\\{ - 1}&{0 - i}&0\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}{ - i}&1&0\\{ - 1}&{ - i}&0\end{array}} \right)\)

Apply row operation\(( - i){R_2} + {R_1} \to {R_2}\):

\( = \left( {\begin{array}{*{20}{c}}{ - i}&1&0\\0&0&0\end{array}} \right)\)

so here we have a single equation,

\( - i{k_1} + {k_2} = 0\;\;\; \to \;\;\;{k_2} = i{k_1}\)

choosing\({k_1} = 1\)yields\({k_2} = i\). This gives an eigenvector:

\(K = \left( {\begin{array}{*{20}{l}}1\\i\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right) + i\left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\)

and column vectors:

\({B_1} = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right),\;\;\;{\rm{ and }}\;\;\;{B_2} = \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\)

also,

\(\lambda = \alpha + \beta i\;\;\; \to \;\;\;\lambda = 0 + i\)

where\(\alpha = 0\)and\(\beta = 1\)

Therefore,

\({X_{\bf{1}}} = \left[ {{B_{\bf{1}}}\cos \beta t - {B_2}\sin \beta t} \right]{e^{\alpha t}} = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\cos t - \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\sin t = \left( {\begin{array}{*{20}{r}}{\cos t}\\{ - \sin t}\end{array}} \right)\)

and

\({X_2} = \left[ {{B_2}\cos \beta t + {B_1}\sin \beta t} \right]{e^{\alpha t}} = \left( {\begin{array}{*{20}{l}}0\\1\end{array}} \right)\cos t + \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\sin t = \left( {\begin{array}{*{20}{c}}{\sin t}\\{\cos t}\end{array}} \right)\)

Hence, the complementary function is

\({X_{\bf{c}}} = {c_1}\left( {\begin{array}{*{20}{r}}{\cos t}\\{ - \sin t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{\sin t}\\{\cos t}\end{array}} \right)\)

04

Find the invertible matrix:

The entries in\({X_1}\)form the first column of\(\Phi (t)\), and the entries in\({X_2}\)form the second column of\(\Phi (t)\). Therefore,

\(\Phi (t) = \left( {\begin{array}{*{20}{r}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right)\)

we want to make sure that $\Phi(t)$ is an invertible matrix by checking the determinant, where

\(|\Phi (t)| = \left| {\begin{array}{*{20}{r}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right|\)

\( = {\cos ^2}t + {\sin ^2}t\)

\( = 1 \ne 0\)

since the determinant does not equal zero, the matrix is in fact, an invertible matrix.

So now,

\({\Phi ^{ - 1}}(t) = \left( {\begin{array}{*{20}{r}}{\cos t}&{ - \sin t}\\{\sin t}&{\cos t}\end{array}} \right)\)

05

Find the general solution of a Nonhomogeneous system:

obtaining the particular solution,

\({X_{\bf{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)

\( = \left( {\begin{array}{*{20}{r}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{r}}{\cos t}&{ - \sin t}\\{\sin t}&{\cos t}\end{array}} \right)\left( {\begin{array}{*{20}{c}}0\\{\sec t\tan t}\end{array}} \right)dt\)

\( = \left( {\begin{array}{*{20}{r}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{r}}{ - \sin t\sec t\tan t}\\{\cos t\sec t\tan t}\end{array}} \right)dt\)

\( = \left( {\begin{array}{*{20}{r}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{r}}{ - {{\tan }^2}t}\\{\tan t}\end{array}} \right)dt\)

\( = \left( {\begin{array}{*{20}{r}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right)\left( {\begin{array}{*{20}{r}}{t - \tan t}\\{ - \ln |\cos t|}\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{r}}{t\cos t - \cos t\tan t - \ln |\cos t|\sin t}\\{ - t\sin t + \sin t\tan t - \ln |\cos t|\cos t}\end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}}{t\cos t - \sin t - \ln |\cos t|\sin t}\\{ - t\sin t + \sin t\tan t - \ln |\cos t|\cos t}\end{array}} \right)\)

\( = = \left( {\begin{array}{*{20}{r}}{\cos t}\\{ - \sin t}\end{array}} \right)t + \left( {\begin{array}{*{20}{c}}{ - \sin t}\\{\sin t\tan t}\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{\sin t}\\{\cos t}\end{array}} \right)\ln |\cos t|\)

Finally, the general solution of the system is

\(X(t) = {X_c} + {X_p}\)

\( = {c_1}\left( {\begin{array}{*{20}{r}}{cost}\\{ - sint}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{sint}\\{cost}\end{array}} \right) + \left( {\begin{array}{*{20}{r}}{cost}\\{ - sint}\end{array}} \right)t + \left( {\begin{array}{*{20}{r}}{ - sint}\\{sinttant}\end{array}} \right) - \left( {\begin{array}{*{20}{l}}{sint}\\{cost}\end{array}} \right)ln|cost|\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solve Problem 14 again, but this time assume that the springs are in series as shown in Figure 5.1.6.

Spring Pendulum The rotational form of Newtonโ€™s secondlaw of motion is:The time rate of change of angular momentum about a point isequal to the moment of the resultant force (torque).In the absence of damping or other external forces, an analogueof (14) in Section 5.3 for the pendulum shown in Figure 5.3.3is then

(a) When m and l are constant show that (1) reduces to (6) ofSection 5.3.(b) Now suppose the rod in Figure 5.3.3 is replaced with aspring of negligible mass. When a mass m is attached toits free end the spring hangs in the vertical equilibriumposition shown in Figure 5.R.4 and has length l0. When the spring pendulum is set in motion we assume that themotion takes place in a vertical plane and the spring is stiffenough not to bend. For t . 0 the length of the spring isthen lstd 5 l0 1 xstd, whereis the displacement from theequilibrium position. Find the differential equation for thedisplacement angledefined by (1).

Find the eigenvalues and eigenfunctions for the given boundary-value problem.

y''+ฮปy=0,y(0)=0,y'(ฯ€/2)=0

In Problem 37 write the equation of motion in the form x(t)=Asin(ฯ‰t+ฯ•)+Beโˆ’2tsin(4t+ฮธ). What is the amplitude of vibrations after a very long time?

Suppose that a uniform thin elastic column is hinged at the endx=0and embedded at the endx=L.

(a) Use the fourth-order differential equation given in Problem 25 to find the eigenvaluesฮปn,the critical loadsPn,the Euler loadP1,and the deflections


yn(x).

(b) Use a graphing utility to graph the first buckling mode.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free