Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems \({\bf{13}} - {\bf{32}}\)use variation of parameters to solve the given nonhomogeneous system.

\(16.{{\bf{X}}^\prime } = \left( {\begin{array}{*{20}{r}}2&{ - 1}\\4&2\end{array}} \right){\bf{X}} + \left( {\begin{array}{*{20}{c}}{\sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}}\)

Short Answer

Expert verified

The general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{r}}2&{ - 1}\\4&2\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}{\sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}}\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{c}}{ - \sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}} + {c_2}\left( {\begin{array}{*{20}{c}}{\cos 2t}\\{2\sin 2t}\end{array}} \right){e^{2t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{\sin 2t\sin 4t}}{4} - \frac{{\cos 2t\cos 4t}}{4}}\\{\frac{{\cos 2t\sin 4t}}{2} - \frac{{\sin 2t\cos 4t}}{2}}\end{array}} \right){e^{2t}}\)

Step by step solution

01

Determine the complex Eigen values

The polynomial of degree \(n\) of the variable \(\lambda \) is the characteristic polynomial of the \(n \times n\) matrix\(A\).

\(p(\lambda ) = \det (\lambda I - A)\)

Its root is the eigenvalue of\(A\).

02

Determine the Eigen values

Given

\({X^\prime } = \left( {\begin{array}{*{20}{r}}2&{ - 1}\\4&2\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}{\sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}}\)

Where

\(A = \left( {\begin{array}{*{20}{r}}2&{ - 1}\\4&2\end{array}} \right)\)

Now, we find the characteristic equation of the coefficient matrix,

\(\det (A - \lambda I) = 0\;\;\; \to \left| {\begin{array}{*{20}{c}}{2 - \lambda }&{ - 1}\\4&{2 - \lambda }\end{array}} \right| = 0\)

\((2 - \lambda )(2 - \lambda ) + 4 = 0\)

\(4 - 2\lambda - 2\lambda + {\lambda ^2} + 4 = 0\)

\({\lambda ^2} - 4\lambda + 8 = 0\)

Where,

\(\lambda {\rm{ }} = \frac{{4 \pm \sqrt {16 - 4(1)(8)} }}{2}\)

\( = \frac{{4 \pm 4i}}{2}\)

\( = 2 \pm 2i\)

So our eigenvalues are\({\lambda _1} = 2 + 2i\), and\({\lambda _2} = \overline {{\lambda _1}} = 2 - 2i\).

03

Determine the Complementary function

For \({\lambda _1} = 2 + 2i:\)

\((A - (2 + 2i)I\mid 0){\rm{ }} = \left( {\begin{array}{*{20}{c}}{2 - (2 + 2i)}&{ - 1}&0\\4&{2 - (2 + 2i)}&0\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}{ - 2i}&{ - 1}&0\\4&{ - 2i}&0\end{array}} \right)\)

Apply row operation \({R_2} - (2i){R_1} \to {R_2}\) :

\( = \left( {\begin{array}{*{20}{c}}{ - 2i}&{ - 1}&0\\0&0&0\end{array}} \right)\)

So here we have a single equation,

\( - 2i{k_1} - {k_2} = 0\;\;\; \to \;\;\;{k_1} = \frac{i}{2}{k_2}\)

Choosing \({k_2} = 2\) yields\({k_1} = i\).

This gives an eigenvector:

\(K = \left( {\begin{array}{*{20}{l}}i\\2\end{array}} \right) = \left( {\begin{array}{*{20}{l}}0\\2\end{array}} \right) + i\left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\)

And column vectors:

\({B_1} = \left( {\begin{array}{*{20}{l}}0\\2\end{array}} \right),\)And \({B_2} = \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\)

Also,

\(\lambda = \alpha + \beta i\;\;\; \to \;\;\;\lambda = 2 + 2i\)

Where \(\alpha = 2\) and \(\beta = 2\)

Therefore,

\({X_{\bf{1}}} = \left[ {{B_1}\cos \beta t - {B_2}\sin \beta t} \right]{e^{\alpha t}}\)

\( = \left[ {\left( {\begin{array}{*{20}{l}}0\\2\end{array}} \right)\cos 2t - \left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\sin 2t} \right]{e^{2t}}\)

\( = \left( {\begin{array}{*{20}{c}}{ - \sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}}\)

And

\({X_{\bf{2}}} = \left[ {{B_2}\cos \beta t + {B_1}\sin \beta t} \right]{e^{\alpha t}}\)

\( = \left[ {\left( {\begin{array}{*{20}{l}}1\\0\end{array}} \right)\cos 2t + \left( {\begin{array}{*{20}{l}}0\\2\end{array}} \right)\sin 2t} \right]{e^{2t}}\)

\( = \left( {\begin{array}{*{20}{c}}{\cos 2t}\\{2\sin 2t}\end{array}} \right){e^{2t}}\)

Hence, the complementary function is

\({X_{\bf{c}}} = {c_1}\left( {\begin{array}{*{20}{c}}{ - \sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}} + {c_2}\left( {\begin{array}{*{20}{c}}{\cos 2t}\\{2\sin 2t}\end{array}} \right){e^{2t}}\)

04

Determine the general solution of the system

The entries in \({X_1}\)form the first column of\(\Phi (t)\), and the entries in \({X_2}\)form the second column of\(\Phi (t)\).

Therefore,

\(\Phi (t) = \left( {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right)\)

We want to make sure that \(\Phi (t)\) is an invertible matrix by checking the determinant, where

\(|\Phi (t)|{\rm{ }} = \left| {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right|\)

\( = \left( { - {e^{2t}}\sin 2t} \right)\left( {2{e^{2t}}\sin 2t} \right) - \left( {{e^{2t}}\cos 2t} \right)\left( {2{e^{2t}}\cos 2t} \right)\)

\( = - 2{e^{4t}}{\sin ^2}2t - 2{e^{4t}}{\cos ^2}2t\)

\( = - 2{e^{4t}}\left( {{{\sin }^2}2t + {{\cos }^2}2t} \right)\)

\( = - 2{e^{4t}} \ne 0\)

Since the determinant does not equal zero, the matrix is in fact, an invertible matrix.

So now,

\({\Phi ^{ - 1}}(t) = - \frac{1}{{2{e^{4t}}}}\left( {\begin{array}{*{20}{c}}{2{e^{2t}}\sin 2t}&{ - {e^{2t}}\cos 2t}\\{ - 2{e^{2t}}\cos 2t}&{ - {e^{2t}}\sin 2t}\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}{ - {e^{ - 2t}}\sin 2t}&{\frac{1}{2}{e^{ - 2t}}\cos 2t}\\{{e^{ - 2t}}\cos 2t}&{\frac{1}{2}{e^{ - 2t}}\sin 2t}\end{array}} \right)\)

Obtaining the particular solution.

\({X_{\rm{p}}} = \Phi (t)\int {{\Phi ^{ - 1}}} (t)F(t)dt\)

\( = \left( {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - {e^{ - 2t}}\sin 2t}&{\frac{1}{2}{e^{ - 2t}}\cos 2t}\\{{e^{ - 2t}}\cos 2t}&{\frac{1}{2}{e^{ - 2t}}\sin 2t}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}}dt\)

\( = \left( {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{ - {{\sin }^2}2t + {{\cos }^2}2t}\\{\sin 2t\cos 2t + \sin 2t\cos 2t}\end{array}} \right)dt\)

Use trigonometric identity\({\cos ^2}t - {\sin ^2}t = \cos 2t\),

\( = \left( {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{\cos 4t}\\{2\sin 2t\cos 2t}\end{array}} \right)dt\)

To integrate

\(\int {\cos } 4tdt\)

Use the method of substitution:

\(u = 4t\;\;\; \to \;\;\;dt = \frac{1}{4}du\)

Where,

\(\int {\cos } 4tdt = \frac{1}{4}\)

\(\int {\cos } udu = \frac{{\sin u}}{4}\)

Undo substitution, \( = \frac{{\sin 4t}}{4}\)

And to integrate

\(\int 2 \sin 2t\cos 2tdt\)

We will also use the method of substitution:

\(u = \sin 2t\;\;\; \to \;\;\;dt = \frac{1}{{2\cos 2t}}du\)

Where,

\(\int 2 \sin 2t\cos 2tdt{\rm{ }} = \int 2 u\cos 2t\frac{1}{{2\cos 2t}}du\)

\( = \int u du\)

\( = \frac{{{u^2}}}{2}\)

Undo substitution,

\( = \frac{{{{\sin }^2}2l}}{2}\)

\( = - \frac{{\cos 4l}}{4}\)

We now can go back to obtaining the particular solution,

\({X_{\bf{p}}} = \left( {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right)\smallint \left( {\begin{array}{*{20}{c}}{\cos 4t}\\{2\sin 2t\cos 2t}\end{array}} \right)dt\)

\( = \left( {\begin{array}{*{20}{c}}{ - {e^{2t}}\sin 2t}&{{e^{2t}}\cos 2t}\\{2{e^{2t}}\cos 2t}&{2{e^{2t}}\sin 2t}\end{array}} \right)\left( {\begin{array}{*{20}{c}}{\frac{{\sin 4t}}{4}}\\{ - \frac{{\cos 4t}}{4}}\end{array}} \right)\)

\( = \left( {\begin{array}{*{20}{c}}{ - \frac{{\sin 2t\sin 4t}}{4} - \frac{{\cos 2t\cos 4t}}{4}}\\{\frac{{\cos 2t\sin 4t}}{2} - \frac{{\sin 2t\cos 4t}}{2}}\end{array}} \right){e^{2t}}\)

Finally, the general solution of the system is

\(X(t){\rm{ }} = {X_{\bf{c}}} + {X_{\bf{p}}}\)

\( = {c_1}\left( {\begin{array}{*{20}{c}}{ - \sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}} + {c_2}\left( {\begin{array}{*{20}{c}}{\cos 2t}\\{2\sin 2t}\end{array}} \right){e^{2t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{\sin 2t\sin 4t}}{4} - \frac{{\cos 2t\cos 4t}}{4}}\\{\frac{{\cos 2t\sin 4t}}{2} - \frac{{\sin 2t\cos 4t}}{2}}\end{array}} \right){e^{2t}}\)

Therefore, the general solution of the system for \({X^\prime } = \left( {\begin{array}{*{20}{r}}2&{ - 1}\\4&2\end{array}} \right)X + \left( {\begin{array}{*{20}{c}}{\sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}}\) is \(X(t) = {c_1}\left( {\begin{array}{*{20}{c}}{ - \sin 2t}\\{2\cos 2t}\end{array}} \right){e^{2t}} + {c_2}\left( {\begin{array}{*{20}{c}}{\cos 2t}\\{2\sin 2t}\end{array}} \right){e^{2t}} + \left( {\begin{array}{*{20}{c}}{ - \frac{{\sin 2t\sin 4t}}{4} - \frac{{\cos 2t\cos 4t}}{4}}\\{\frac{{\cos 2t\sin 4t}}{2} - \frac{{\sin 2t\cos 4t}}{2}}\end{array}} \right){e^{2t}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the eigenvalues and eigenfunctions for the given boundary-value problem.


y''+ฮปy=0,y'(0)=0,y(L)=0

A model of a spring/mass system is 4x''+tx=0. By inspection of the differential equation only, discuss the behavior of the system over a long period of time.

Consider a pendulum that is released from rest from an initial displacement of radians. Solving the linear model (7) subject to the initial condition ฮธ0=ฮธ0,ฮธ'0=0gives ฮธt=ฮธ0cosglt . The period of oscillations predicted by this model is given by the familiar formula T=2ฯ€gI=2ฯ€Ig.

The interesting thing about this formula for Tis that it does not depend on the magnitude of the initial displacement ฮธ0. In other words, the linear model predicts that the time it would take the pendulum to swing from an initial displacement of, say,ฮธ0=ฯ€2=90oto-ฯ€2and back again would be exactly the same as the time it would take to cycle from, say,ฮธ0=ฯ€360=0.5oto-ฯ€360o. This is intuitively unreasonable; the actual period must depend on ฮธ0.

If we assume that g=32ft/s2and l=32ft, then the period of oscillation of the linear model is T=2ฯ€s. Let us compare this last number with the period predicted by the non linear model when ฮธ0=ฯ€4. Using a numerical solver that is capable of generating hard data, approximate the solution of,

d2ฮธdt2+sinฮธ=0,ฮธ0=ฯ€4,ฮธ'0=0

On the interval 0โฉฝtโฉฝ2. As in the problem 25, ift1 denotes the first time the pendulum reaches the position OP in Figure 5.3.3, then the period of the non linear pendulum is 4t1. Here is another way of solving the equationฮธt=0 . Experiment with small step sizes and advance the time, starting at t=0and ending att=2 . From your hard data observe the timet1 whenฮธt changes , for the first time , from positive to negative. Use the value t1to determine the true value of the period of the non linear pendulum. Compute the percentage relative error in the period estimated by T=2ฯ€.


Consider the differential equationay''+by'+cy=g(x), where,a, b and care constants. Choose the input functionsg(x)forwhich the method of undetermined coefficients is applicableand the input functions for which the method of variation ofparameters is applicable.

(a)role="math" localid="1663898381084" g(x)=exlnx(b)role="math" localid="1663898398048" g(x)=x3cosx(c)role="math" localid="1663898412823" g(x)=e-xsinx

(d)role="math" localid="1663898362328" g(x)=2x-2ex(e)role="math" localid="1663898345398" g(x)=sin2x(f)g(x)=exsinx

(a) Show that the current i(t) in an L R C-series circuit satisfies

Ld2idt2+Rdidt+1Ci=E'(t)

whereE'(t)denotes the derivative of E(t).

(b) Two initial conditions i(0) andi'(0)can be specified for the DE in part (a). Ifi(0)=i0and, q(0)=q0what isi'(0)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free