Chapter 3: Q19RP (page 116)
Question: With the identifications\(a = r,b = r/K\), and\(a/b = K\), Figures 2.1.7 and 3.2.2 show that the logistic population model, (3) of Section\(3.2\), predicts that for an initial population\({P_0},0 < {P_0} < K\), regardless of how small \({P_0}\)is, the population increases over time but does not surpass the carrying capacity\(K\).Also, for \({P_0} > K\)the same model predicts that a population cannot sustain itself over time, so it decreases but yet never falls below the carrying capacity \(K\)of the ecosystem. The American ecologist Warder Clyde Alle (1885-1955) showed that by depleting certain fisheries beyond a certain level, the fish population never recovers. How would you modify the differential equation (3) to describe a population \(P\)that has these same two characteristics of (3) but additionally has a threshold level\(A,0 < A < K\), below which the population cannot sustain itself and approaches extinction over time. (Hint: Construct a phase portrait of what you want and then form a differential equation.)
Short Answer
\(\frac{{dP}}{{dt}} = (P - A)\left( {r - \frac{r}{K}P} \right)\)