Chapter 3: Q18RP (page 116)
Question: When all the curves in a family \(G\left( {x,y,{c_1}} \right) = 0\)intersect orthogonally all the curves in another family\(H\left( {x,y,{c_2}} \right) = 0\), the families are said to be orthogonal trajectories of each other. See Figure 3.R.5. If \(dy/dx = f(x,y)\)is the differential equation of one family, then the differential equation for the orthogonal trajectories of this family is\(dy/dx = - 1/f(x,y)\). In Problems\(\;{\bf{15}} - {\bf{18}}\)find the differential equation of the given family by computing\(dy/dx\)and eliminating \({c_1}\)from this equation. Then find the orthogonal trajectories of the family. Use a graphing utility to graph both families on the same set of coordinate axes.
\(y = \frac{1}{{x + {c_1}}}\)
Short Answer
\({y^3} = 3x + {c_2}\)