Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: When all the curves in a family \(G\left( {x,y,{c_1}} \right) = 0\)intersect orthogonally all the curves in another family\(H\left( {x,y,{c_2}} \right) = 0\), the families are said to be orthogonal trajectories of each other. See Figure 3.R.5. If \(dy/dx = f(x,y)\)is the differential equation of one family, then the differential equation for the orthogonal trajectories of this family is\(dy/dx = - 1/f(x,y)\). In Problems\(\;{\bf{15}} - {\bf{18}}\)find the differential equation of the given family by computing\(dy/dx\)and eliminating \({c_1}\)from this equation. Then find the orthogonal trajectories of the family. Use a graphing utility to graph both families on the same set of coordinate axes.

\(y = {c_1}{e^x}\)

Short Answer

Expert verified

\(\frac{{{y^2}}}{2} = - x + {c_2}\)

Step by step solution

01

Definition

Orthogonal trajectory family of curves that intersect another family of curves at right angles.

02

Differential equation of given family

Consider\(y = {c_1}{e^x}\,\,\, - - - (1)\)

Differentiate equation (1) w.r.t\(x\).

\(\begin{array}{l}\frac{{dy}}{{dx}} = {c_1}{e^x}\\\frac{{dy}}{{dx}} = y\left( {{\rm{ since }}y = {c_1}{e^x}} \right)\end{array}\)

So, differential equation of the given family is\(\frac{{dy}}{{dx}} = y\).

03

Differential equation of orthogonal trajectory

Differential equation for the orthogonal trajectories of the given family is:

\(\begin{array}{l}\frac{{dy}}{{dx}} = - \frac{1}{{f(x,y)}}\\\frac{{dy}}{{dx}} = \frac{{ - 1}}{y}\end{array}\)

Solve the above equation.

\(\begin{array}{l}\int y dy = \int - dx\\\frac{{{y^2}}}{2} = - x + {c_2}\end{array}\)

Orthogonal trajectories of the given family is\(\frac{{{y^2}}}{2} = - x + {c_2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Construct a mathematical model for a radioactive series of four elements W, X, Y, and Z, where Z is a stable element.

How High?โ€”No Air Resistance Suppose a small cannonball weighing 16 pounds is shot vertically upward, as shown in Figure 3.1.13, with an initial velocity v0 5 300 ft/s. The answer to the question โ€œHow high does the cannonball go?โ€ depends on whether we take air resistance into account.

(a) Suppose air resistance is ignored. If the positive direction is upward, then a model for the state of the cannonball is given by d2 sydt2 5 2g (equation (12) of Section 1.3). Since dsydt 5 v(t) the last differential equation is the same as dvydt 5 2g, where we take g 5 32 ft/s2 . Find the velocity v(t) of the cannonball at time t.

(b) Use the result obtained in part (a) to determine the height s(t) of the cannonball measured from ground level. Find the maximum height attained by the cannonball.

In (14) of Section 1.3 we saw that a differential equation describing the velocity v of a falling mass subject to air resistance proportional to the instantaneous velocity is

mdvdt=mg-kv

where k>0is a constant of proportionality. The positive direction is downward.

(a) Solve the equation subject to the initial condition v(0)=v0.

(b) Use the solution in part (a) to determine the limiting, or terminal, velocity of the mass. We saw how to determine the terminal velocity without solving the DE in Problem 40 in Exercises 2.1.

(c) If the distance s, measured from the point where the mass was released above ground, is related to velocity v by ds/dt=v(t), nd an explicit expression for s(t) if s(0)=0.

Solve the initial-value problem in Problem 20 when a cross section of a uniform piece of wood is the triangular region given in Figure 3.R.7. Assume again that k=1. How long does it take to cut through this piece of wood?

The population of a community is known to increase at a rate proportional to the number of people present at time t. If an initial populationP0has doubled in 5years, how long will it take to triple? To quadruple?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free