Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Three large tanks contain brine, as shown in Figure 3.3.8. Use the information in the figure to construct a mathematical model for the number of pounds of salt \({{\bf{x}}_1}\left( {\bf{t}} \right),{\rm{ }}{{\bf{x}}_2}\left( {\bf{t}} \right),\)and \({x_3}(t)\)at time t in tanks A, B, and C, respectively. Without solving the system. predict limiting values of \({{\bf{x}}_1}\left( {\bf{t}} \right),{\rm{ }}{{\bf{x}}_2}\left( {\bf{t}} \right),\)and \({x_3}(t)\)as \(t \to \infty \)

Short Answer

Expert verified

The system of differential equations for salt in tanks\(A,{\rm{ }}B\;\)and\(C\)are\(\frac{{d{x_1}}}{{dt}} = - \frac{1}{{50}}{x_1}\)

\(\frac{{d{x_2}}}{{dt}} = \frac{1}{{50}}{x_1} - \frac{2}{{75}}{x_2}\)

\(\frac{{d{x_3}}}{{dt}} = \frac{2}{{75}}{x_2} - \frac{1}{{25}}{x_3}\)

Step by step solution

01

Define the newton law of differential equation

Differential equations are used in research and engineering to model physical quantities that fluctuate over time.

Define the rate of change \(\frac{{d{x_1}}}{{dt}} = {\rm{ Input rate of salt for tank A}} - {\rm{ Output rate of salt for tank A}}\)

02

Find the rate of change in salts for A tank

Let the number of pound so salts be\(A,B{\rm{ and }}C{\rm{ as }}\left( {{x_1}} \right),\left( {{x_2}} \right){\rm{ and }}\left( {{x_3}} \right)\)

\(\frac{{d{x_1}}}{{dt}} = {\rm{ Input rate of salt for }}{\mathop{\rm tank}\nolimits} {\rm{A}} - {\rm{ Output rate of salt for }}{\mathop{\rm tank}\nolimits} {\rm{A}}\)

\(\frac{{d{x_1}}}{{dt}} = (4{\rm{gal}}/{\rm{min}} \times 0{\rm{Ib}}/{\rm{gal}}) - \left( {4{\rm{gal}}/{\rm{min}} \times \frac{{{x_1}}}{{200}}{\rm{Ib}}/{\rm{gal}}} \right)\),

\(\frac{{d{x_1}}}{{dt}} = - \frac{1}{{50}}{x_1}\)

03

Find the rate of change in salts for B tank 

Then\(\frac{{d{x_2}}}{{dt}} = {\rm{ Input rate of salt for }}{\mathop{\rm tank}\nolimits} {\rm{B}} - {\rm{ Output rate of salt for }}{\mathop{\rm tank}\nolimits} {\rm{B}}\)

\(\frac{{d{x_2}}}{{dt}} = \left( {4{\rm{gal}}/{\rm{min}} \times \frac{{{x_1}}}{{200}}{\rm{Ib}}/{\rm{gal}}} \right) - \left( {4{\rm{gal}}/{\rm{min}} \times \frac{{{x_2}}}{{150}}{\rm{Ib}}/{\rm{gal}}} \right)\)

\(\frac{{d{x_2}}}{{dt}} = \frac{1}{{50}}{x_1} - \frac{2}{{75}}{x_2}\)

04

Find the rate of change in salts for C tank

Again

\(\frac{{d{x_3}}}{{dt}} = {\rm{ Input rate of salt for tank C}} - {\rm{ Output rate of salt for tank C}}\)

\(\frac{{d{x_3}}}{{dt}} = \left( {4{\rm{gal}}/\min \times \frac{{{x_2}}}{{150}}{\rm{Ib}}/{\rm{gal}}} \right) - \left( {4{\rm{gal}}/{\rm{min}} \times \frac{{{x_3}}}{{100}}{\rm{Ib}}/{\rm{gal}}} \right)\)

\(\frac{{d{x_3}}}{{dt}} = \frac{2}{{75}}{x_2} - \frac{1}{{25}}{x_3}\)

\( = 37.8{\rm{ seconds }}\)

The system of differential equations for salt in tanks\(A,{\rm{ }}B\;\)and\(C\)are\(\frac{{d{x_1}}}{{dt}} = - \frac{1}{{50}}{x_1}\)

\(\frac{{d{x_2}}}{{dt}} = \frac{1}{{50}}{x_1} - \frac{2}{{75}}{x_2}\)

\(\frac{{d{x_3}}}{{dt}} = \frac{2}{{75}}{x_2} - \frac{1}{{25}}{x_3}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free