Chapter 3: Q10E (page 113)
Three large tanks contain brine, as shown in Figure 3.3.8. Use the information in the figure to construct a mathematical model for the number of pounds of salt \({{\bf{x}}_1}\left( {\bf{t}} \right),{\rm{ }}{{\bf{x}}_2}\left( {\bf{t}} \right),\)and \({x_3}(t)\)at time t in tanks A, B, and C, respectively. Without solving the system. predict limiting values of \({{\bf{x}}_1}\left( {\bf{t}} \right),{\rm{ }}{{\bf{x}}_2}\left( {\bf{t}} \right),\)and \({x_3}(t)\)as \(t \to \infty \)
Short Answer
The system of differential equations for salt in tanks\(A,{\rm{ }}B\;\)and\(C\)are\(\frac{{d{x_1}}}{{dt}} = - \frac{1}{{50}}{x_1}\)
\(\frac{{d{x_2}}}{{dt}} = \frac{1}{{50}}{x_1} - \frac{2}{{75}}{x_2}\)
\(\frac{{d{x_3}}}{{dt}} = \frac{2}{{75}}{x_2} - \frac{1}{{25}}{x_3}\)