Chapter 1: 6.3-21E (page 2) URL copied to clipboard! Now share some education! In Problems 15–24,x = 0is a regular singular point of the given dif-differential equation. Show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on0,∞.2xy''-3+2xy'+y=0 Short Answer Expert verified Therefore, the solution is:y=C1x5/21+47x+32693x2+…+C21+13x-16x2-16x3+… Step by step solution 01 Given Information. The given problem is:2xy''-(3+2x)y'+y=0 02 Use Differentiation. y=∑n=0∞cnxn+r …*Differentiate (*) we get;y'=∑n=0∞(n+r)cnxn+r-1 …1y''=∑n=0∞(n+r)(n+r-1)cnxn+r-2 …2 03 Substitute the equation. fy'',y',y=2x∑n=0∞cn(n+r)(n+r-1)xn+r-2-(3+2x)∑n=0∞cn(n+r)xn+r-1+∑n=0∞cnxn+r=∑n=0∞2cn(n+r)(n+r-1)xn+r-1⏟a0→xr-1-∑n=0∞3cn(n+r)xn+r-1⏟a0→xr-1-∑n=0∞2cn(n+r)xn+r⏟a0→xr+∑n=0∞cnxn+r⏟a0→xrNow, we do the shift for the third and fourth series from n to n-1 yields;fy'',y',y=2c0r(r-1)xr-1+∑n=1∞2cn(n+r)(n+r-1)xn+r-1-3c0rxr-1+∑n=1∞3cn(n+r)xn+r-1-∑n-1=0∞2cn-1((n-1)+r)x(n-1)+r+∑n-1=0∞cn-1x(n-1)+r=2c0r(r-1)xr-1+∑n=1∞2cn(n+r)(n+r-1)xn+r-1-3c0rxr-1-∑n=1∞3cn(n+r)xn+r-1-∑n=1∞2cn-1(n+r-1)xn+r-1+∑n=1∞cn-1xn+r-1 04 The coefficient of terms fy'',y',y=[2r(r-1)-3r]c0xr-1+∑n=1∞2cn(n+r)(n+r-1)-3cn(n+r)-2cn-1(n+r-1)+cn-1xn+r-1=2r2-2r-3rc0xr-1+∑n=1∞cn(n+r)(2n+2r-2-3)-cn-1(2n+2r-2-1)xn+r-1=[r(2r-5)]c0xr-1+∑n=1∞cn(n+r)(2n+2r-5)-cn-1(2n+2r-3)xn+r-1 05 Identity Property r(2r-5)=0⇒r1=52 & r2=0For , r1 = 5/2 we have:cn(n+r)(2n+2r-5)-cn-1(2n+2r-3)=0cn=cn-1(2n+2r-3)(n+r)(2n+2r-5)y=∑n=0∞cnxn+5/2=x5/2∑n=0∞cnxnNow,cn=cn-1(2n+2r-3)(n+r)(2n+2r-5)=cn-1(2n+2(5/2)-3)(n+5/2)(2n+2(5/2)-5)=cn-12(n+1)(n+5/2)(2n)=2cn-1(n+1)(2n+5)nNow,For n=1,c1=4c07For n = 2c2=2c1·39·2=4c0/73=4c021For, n = 3c3=2c2·411·3=84c0/2133=32c044=32c0693For r = 0 we have:cn=cn-1(2n-3)n(2n-5)For, n = 1c1=c0·-1-3=c03For n = 2c2=c1·12·-1=c0/3-2=-c06For n = 3c3=c2·33·1=-c06For the indicial root as r1= 5/2 ,we get the solution as:y1=x5/2c0+c1x+c2x2+c3x3+c4x4+…=x5/2c0+47c0x+32693c0x2+…=c0x5/21+47x+32693x2+…For the indicial root as r2 = 0 we get the solution asy2=c0+c1x+c2x2+c3x3+c4x4+…=c0+13c0x-16c0x2-16c0x3+…=c01+13x-16x2-16x3+…Thus, the solution is:y(x)=y1(x)+y2(x)=C1x5/21+47x+32693x2+…+C21+13x-16x2-16x3+… Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!