Chapter 1: 6.3-16E (page 2) URL copied to clipboard! Now share some education! In Problems 15–24, x= 0is a regular singular point of the given dif-differential equation. Show that the indicial roots of the singularity do not differ by an integer. Use the method of Frobenius to obtain two linearly independent series solutions about x = 0. Form the general solution on(0,∞).2xy''+5y'+xy=0 Short Answer Expert verified The solution is:y=C11-114x2+1616x4+…+C2x-3/21-12x2+140x4+… Step by step solution 01 Given Information. The given problem is:2xy''+5y'+xy=0 02 Use Differentiation. y=∑n=0∞cnxn+r…(1)Differentiate the above equation, we gety'=∑n=0∞cn(n+r)xn+r-1…(2)y''=∑n=0∞cn(n+r)(n+r-1)xn+r-2…(3) 03 Substitute the equation. fy'',y',y=2x∑n=0∞cn(n+r)(n+r-1)xn+r-2+5∑n=0∞cn(n+r)xn+r-1+x∑n=0∞cnxn+r=∑n=02cn(n+r)(n+r-1)xn+r-1⏟a0→xr-1+∑n=05cn(n+r)xn+r-1⏟a0→xr-1+∑n=0cnxn+r+1⏟a0→xr+1y'',y',y=[2c0r(r-1)xr-1+2c1(r+1)(r)xr+∑n=2∞2cn(n+r)(n+r-1)xn+r-1⏟a2→xr+1+[5c0rxr-1+5c1(r+1)xr+∑n=2∞5cn(n+r)xn+r-1⏟a2→xr+1+∑n=0∞cnxn+r+1⏟a0→xr+1fy'',y',y=2c0r(r-1)xr-1+2c1(r+1)(r)xr+∑n=2∞2cn(n+r)(n+r-1)xn+r-1+5c0rxr-1+5c1(r+1)xr+∑n=2∞5cn(n+r)xn+r-1+∑n-2=0∞cn-2x(n-2)+r+1fy'',y',y=2c0r(r-1)xr-1+2c1(r+1)(r)xr+∑n=2∞2cn(n+r)(n+r-1)xn+r-1+5c0rxr-1+5c1(r+1)xr+∑n=2∞5cn(n+r)xn+r-1+∑n=2∞cn-2xn+r-1fy'',y',y=[2r(r-1)+5r]c0xr-1+[2(r+1)(r)+5(r+1)]c1xr+∑n=2∞2cn(n+r)(n+r-1)+5cn(n+r)+cn-2xn+rfy'',y',y=2r2-2r+5rc0xr-1+2r2+2r+5r+5c1xr+∑n=2∞cn(n+r)[2n+2r-2+5]+cn-2xn+rfy'',y',y=[r(2r+3)]c0xr-1+[(2r+5)(r+1)]c1xr+∑n=2∞cn(n+r)[2n+2r+3]+cn-2xn+r 04 Identity Property fy'',y',y=0Therefore, we have;r(2r+3)=0⇒r1=0,r2=-32c1=0 …(4)cn(n+r)[2n+2r+3]+cn-2=0cn=-cn-2(n+r)[2n+2r+3]Now,If, r1=0 then:y=∑n=0∞cnxncn=-cn-2n[2n+3] …(5)For n = 2,c2=-c02·7=-c014For, n = 3C3= 0For, n = 4c4=-c24·11=--c0/1444=c0616Therefore,y1=c0+c1x+c2x2+c3x3+c4x4+…=c0+0·x-114c0x2+0·x3+1616c0x4+…=c01-114x2+1616x4+… …(6)For, r1=-3/2y=∑n=0∞cnxn-3/2=x-3/2∑n=0∞cnxncn=-cn-2(n-3/2)[2n+2(-3/2)+3]=-cn-2n(2n-3)⋯(7)For, n = 2c2=-C02·1=-c02For n = 3, C3=0For n = 4c4=-c24·5=--c0/220=c040y2=x-3/2c0+c1x+c2x2+c3x3+c4x4+…=x-3/2c0+0·x-12c0x2+0·x3+140c0x4+…=c0x-3/21-12x2+140x4+… …(8)For, r2=-3/2y=C11-114x2+1616x4+…+C2x-3/21-12x2+140x4+… Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!