\(G(x,t) = \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( t \right)}}\)
\( = \frac{{{e^{2t}} \times {e^{ - 5x}} - {e^{2x}} \times {e^{ - 5t}}}}{{ - 7{e^{ - 3t}}}}\)
\( = \frac{{{e^{(2t - 5x)}} - {e^{(2x - 5t)}}}}{{ - 7{e^{ - 3t}}}}\)
\( = \frac{{{e^{(2x - 5t)}} - {e^{(2t - 5x)}}}}{{7{e^{ - 3t}}}} \times \frac{{{e^{3t}}}}{{{e^{3t}}}}\)
\( = \frac{{{e^{(2x - 2t)}} - {e^{(5t - 5x)}}}}{7}\)
\( = \frac{1}{7}\left( {{e^{2(x - t)}} - {e^{5(t - x)}}} \right)\)
To find the particular solution
\({y_p}(x) = \int\limits_{{x_0}}^x {} G(x,t)f(t)dt\)
\( = \int\limits_{{x_0}}^x {\frac{1}{7}\left( {{e^{2(x - t)}} - {e^{5(t - x)}}} \right)} {t^2}dt\)
\( = \frac{1}{7}\int\limits_{{x_0}}^x {{t^2}} \left( {{e^{2(x - t)}} - {e^{5(t - x)}}} \right)dt\)
\(\begin{aligned}{c}y = {y_c} + {y_p}\\ = {c_1}{e^{2x}} + {c_2}x{e^{ - 5x}} + \frac{1}{7}\int\limits_{{x_0}}^x {{t^2}} \left( {{e^{2(x - t)}} - {e^{5(t - x)}}} \right)dt\end{aligned}\)
Thus, the required answer is
\(y = {c_1}{e^{2x}} + {c_2}x{e^{ - 5x}} + \frac{1}{7}\int\limits_{{x_0}}^x {} {t^2}\left( {{e^{5(x - t)}} - {e^{2(t - x)}}} \right)dt\)