\(G(x,t) = \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( t \right)}}\)
\( = \frac{{{e^{4t}} \times {e^{ - 4x}} - {e^{4x}} \times {e^{ - 4t}}}}{{ - 8}}\)
\( = \frac{{{e^{(4t - 4x)}} - {e^{(4x - 4t)}}}}{{ - 8}}\)
\( = \frac{{{e^{(4x - 4t)}} - {e^{(4t - 4x)}}}}{8}\)
\( = \frac{{{e^{4(x - t)}} - {e^{4(t - x)}}}}{8}\)
\( = \frac{1}{4}\frac{{{e^{4(x - t)}} - {e^{4(t - x)}}}}{2}\)
\( = \frac{1}{4}sinh4(x - t)\)
To find the particular solution
\({y_p}(x) = \int\limits_{{x_0}}^x {} G(x,t)f(t)dt\)
\( = \int\limits_{{x_0}}^x {} \frac{1}{4}sinh4(x - t)t{e^{ - 2t}}dt\)
\( = \frac{1}{4}\int\limits_{{x_0}}^x {} t{e^{ - 2t}}sinh4(x - t)dt\)
\(\begin{aligned}{c}y = {y_c} + {y_p}\\ = {c_1}{e^{4x}} + {c_2}{e^{ - 4x}} + \frac{1}{4}\int\limits_{{x_0}}^x {} t{e^{ - 2t}}sinh4(x - t)dt\\ = {c_1}{e^{4x}} + {c_2}{e^{ - 4x}} + \frac{1}{4}\int\limits_{{x_o}}^x {} \frac{{tsinh4(x - t)}}{{{e^{2t}}}}dt\end{aligned}\)
Thus the required answer is
\(y = {c_1}{e^{4x}} + {c_2}{e^{ - 4x}} + \frac{1}{4}\int\limits_{{x_o}}^x {} \frac{{tsinh4(x - t)}}{{{e^{2t}}}}dt\)