\(G(x,t) = \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( t \right)}}\)
\( = \frac{{{e^t}cost \times {e^x}sinx - {e^x}cosx \times {e^t}sint}}{{{e^{2t}}}}\)
\( = \frac{{{e^{(x + t)}}sinxcost - {e^{(x + t)}}cosxsint}}{{{e^{2t}}}}\)
\( = \frac{{{e^{(x + t)}}sin(x - t)}}{{{e^{2t}}}} \times \frac{{{e^{ - 2t}}}}{{{e^{ - 2t}}}}\)
\( = \frac{{{e^{ - 2t}} \times {e^{(x + t)}}sin(x - t)}}{{{e^{2t}} \times {e^{ - 2t}}}}\)
\( = {e^{(x - t)}}sin(x - t)\)
\( = {e^{(x - t)}}sin(x - t)\)
To find the particular solution
\({y_p}(x) = \int\limits_{{x_0}}^x {} G(x,t)f(t)dt\)
\({y_p}(x) = \int\limits_{{x_0}}^x {{e^{(x - t)}}sin(x - t)f(t)dt} \)
Thus, the required answer is
\({y_p}(x) = \int\limits_{{x_0}}^x {{e^{(x - t)}}sin(x - t)f(t)dt} \)