\(G(x,t) = \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( {{y_1},{y_2}} \right)}}\)
\( = \frac{{cos3t \times sin3x - cos3x \times sin3t}}{3}\)
\( = \frac{{sin3xcos3t - cos3xsin3t}}{3}\)
\( = \frac{{sin(3(x - t))}}{3}\)
\( = \frac{1}{3}sin(3(x - t))\)
\(sin(3(x - t)) = sin3xcos3t - cos3xsin3t\)
To find the particular solution
\({y_p}(x) = \int\limits_{{x_0}}^x {} G(x,t)f(t)dt\)
\( = \int\limits_{{x_0}}^x {} \frac{1}{3}sin(3(x - t))f(t)dt\)
\( = \frac{1}{3}\int\limits_{{x_0}}^x {} sin(3(x - t))f(t)dt\)
\({y_p}(x) = \frac{1}{3}\int\limits_{{x_0}}^x {} sin(3(x - t))f(t)dt\)