\(G(x,t) = \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( {{y_1},{y_2}} \right)}}\)
\( = \frac{{{e^{\frac{1}{2}t}} \times x{e^{\frac{1}{2}x}} - {e^{\frac{1}{2}x}} \times t{e^{\frac{1}{2}t}}}}{{{e^x}}}\)
\( = \frac{{x{e^{\frac{1}{2}(x + t)}} - t{e^{\frac{1}{2}(x + t)}}}}{{{e^x}}}\)
\( = \frac{{(x - t){e^{\frac{1}{2}(x + t)}}}}{{{e^x}}} \times \frac{{{e^{ - x}}}}{{{e^{ - x}}}}\)
\( = \frac{{(x - t){e^{\frac{1}{2}(x + t)}} \times {e^{ - x}}}}{{{e^x} \times {e^{ - x}}}}\)
\( = (x - t){e^{\frac{1}{2}(t - x)}}\)
To find the particular solution
\({y_p}(x) = \int\limits_{{x_0}}^x {} G(x,t)f(t)dt\)
\({y_p}(x) = \int\limits_{{x_0}}^x {} (x - t){e^{\frac{1}{2}(t - x)}}f(t)dt\)