Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Problems 27-36solve the given initial-value problem.

y''+4y'+5y=35e-4x,y(0)=-3,y'(0)=1

Short Answer

Expert verified

y(x)=-10e-2xcosx+9e-2xsinx+7e-4x.

Step by step solution

01

Complementary function

Consider the differential equationy''+4y'+5y=35e-4x,y(0)=-3,y'(0)=1

The auxiliary equation corresponding to homogenous equation is:

m2+4m+5=0

m=-4±42-4(1)(5)2(1)By quadratic rule=-4±16-202=-4±2i2=-2±i

The roots of the auxiliary equation ism1=-2+iand m2=-2-i.

Therefore, the complementary function is.yc(x)=e-2xc1cosx+c2sinx

02

For particular solution

Let particular solution beyp(x)=Ae-4x

Then,

yp'(x)=-4Ae-4xyp''(x)=16Ae-4x

Asyp(x)is a solution of the equation y''+4y'+5y=35e-4xso,

16Ae-4x+4-4Ae-4x+5Ae-4x=35e-4x5Ae-4x=35e-4x5A=35A=7

Thus, the particular solution is.yp(x)=7e-4x

Therefore, the general solution is

y(x)=yc(x)+yp(x)=e-2xc1cosx+c2sinx+7e-4x

03

Apply the first initial condition

To determine constants apply initial condition.

Put y(0)=3iny(x)=e-2xc1cosx+c2sinx+7e-4x

y(0)=e0c1cos0+c2sin0+7e0-3=c1+0+7c1=-10

04

Apply the second initial condition

Differentiatey(x) with respect to x.

y'(x)=-2e-2xc1cosx+c2sinx+e-2x-c1sinx+c2cosx-28e-4x

Put y'(0)=1iny'(x)

y'(0)=-2e0c1cos0+c2sin0+e0-c1sin0+c2cos0-28e01=-2c1+c2-281=20+c2-28sincec1=-10c2=9

Now substituting values we have:

y(x)=e-2xc1cosx+c2sinx+7e-4xy(x)=e-2x(-10cosx+9sinx)+7e-4x.

Therefore, the general solution is y(x)=-10e-2xcosx+9e-2xsinx+7e-4x

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free