\(G(x,t) = \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( {{y_1},{y_2}} \right)}}\)
\( = \frac{{{e^{2t}} \times {e^{ - 5x}} - {e^{2x}} \times {e^{ - 5t}}}}{{ - 7{e^{ - 3x}}}}\)
\( = \frac{{{e^{(2t - 5x)}} - {e^{(2x - 5t)}}}}{{ - 7{e^{ - 3x}}}}\)
\( = \frac{{{e^{(2x - 5t)}} - {e^{(2t - 5x)}}}}{{7{e^{ - 3x}}}} \times \frac{{{e^{3x}}}}{{{e^{3x}}}}\)
\( = \frac{{{e^{(5x - 5t)}} - {e^{(2t - 2x)}}}}{7}\)
\( = \frac{1}{7}\left( {{e^{5(x - t)}} - {e^{2(t - x)}}} \right)\)
To find the particular solution
\({y_p}(x) = \int\limits_{{x_0}}^x {} G(x,t)f(t)dt\)
\( = \int\limits_{{x_0}}^x {} \frac{1}{7}\left( {{e^{5(x - t)}} - {e^{2(t - x)}}} \right)f(t)dt\)
\( = \frac{1}{7}\int\limits_{{x_0}}^x {} \left( {{e^{5(x - t)}} - {e^{2(t - x)}}} \right)f(t)dt\)
\({y_p}(x) = \frac{1}{7}\int\limits_{{x_0}}^x {} \left( {{e^{5(x - t)}} - {e^{2(t - x)}}} \right)f(t)dt\)