Given non homogeneous differential equation is\(y''' - 3y'' + 3y' - y = x - 4{e^x}\)
Assume that \({y_p} = A{x^3}{e^x} + Bx + C\) …..(1)is a solution of the non-homogeneous differential equation
Differentiate with respect to x
\({y_p}' = A{x^3}{e^x} + 3A{x^2}{e^x} + B\)……(2)
\({y_p}'' = A{x^3}{e^x} + 6A{x^2}{e^x} + 6Ax{e^x}\)…..(3)
\({y_p}''' = A{x^3}{e^x} + 9A{x^2}{e^x} + 18Ax{e^x} + 6A{e^x}\)……(4)
Substituting (1) ,(2), (3) and (4) in given differential equation
\(\begin{aligned}{l}A{x^3}{e^x} + 9A{x^2}{e^x} + 18Ax{e^x} + 6A{e^x} - 3[A{x^3}{e^x} + 6A{x^2}{e^x} + 6Ax{e^x}] + 3[A{x^3}{e^x} + 3A{x^2}{e^x} + B]\\ - [A{x^3}{e^x} + Bx + C] = x - 4{e^x}\end{aligned}\)
Or, \(Bx + (3B + C) + 6A{e^x} = x - 4{e^x}\)
comparing the coefficients,
\( - B = 1\)
\(3B - C = 0\)
\(6A = - 4\)
Solving, \(A = \frac{{ - 2}}{3},B = - 1,C = - 3\)
Hence the particular solution is
\({y_p} = \frac{{ - 2}}{3}{x^3}{e^x} - x - 3\)