Given non homogeneous differential equation is\(y''' - 2y'' - 4y' + 8y = 6x{e^{2x}}\)
Assume that \({y_p} = A{x^3}{e^{2x}} + B{x^2}{e^{2x}}\) …..(1)is a solution of the non-homogeneous differential equation
Differentiate with respect to x
\({y_p}' = 3A{x^2}{e^{2x}} + 2A{x^3}{e^{2x}} + 2B{x^2}{e^{2x}} + Bx{e^{2x}}\)
Or \({y_p}' = 2A{x^3}{e^{2x}} + (3A + 2B){x^2}{e^{2x}} + 2Bx{e^{2x}}\)……(2)
\({y_p}'' = 4A{x^3}{e^{2x}} + (12A + 4B){x^2}{e^{2x}} + (6A + 8B)x{e^{2x}} + 2B{e^{2x}}\)…..(3)
\({y_p}''' = 8A{x^3}{e^{2x}} + (36A + 8B){x^2}{e^{2x}} + (36A + 24B)x{e^{2x}} + (6A + 12B){e^{2x}}\)……(4)
Substituting (1) ,(2), (3) and (4) in given differential equation
\(\begin{aligned}{l}8A{x^3}{e^{2x}} + (36A + 8B){x^2}{e^{2x}} + (36A + 24B)x{e^{2x}} + (6A + 12B){e^{2x}} - 2[4A{x^3}{e^{2x}} + (12A + 4B){x^2}{e^{2x}} + \\(6A + 8B)x{e^{2x}} + 2B{e^{2x}}] - 4[2A{x^3}{e^{2x}} + (3A + 2B){x^2}{e^{2x}} + 2Bx{e^{2x}}] + 8[A{x^3}{e^{2x}} + B{x^2}{e^{2x}}] = 6x{e^{2x}}\end{aligned}\)
Or, \(24Ax{e^{2x}} + (6A + 8B){e^{2x}} = 6x{e^{2x}}\)
comparing the coefficients,
\(24A = 6\)
\(6A + 8B = 0\)
Solving, \(A = \frac{1}{4},B = \frac{{ - 3}}{{16}}\)
Hence the particular solution is
\({y_p} = \frac{1}{4}{x^3}{e^{2x}} - \frac{3}{{16}}{x^2}{e^{2x}}\)