\(\begin{aligned}{c}G(x,t) &= \frac{{{y_1}(t){y_2}(x) - {y_1}(x){y_2}(t)}}{{W\left( {{y_1},{y_2}} \right)}}\\ &= \frac{{{e^{4t}} \times {e^{ - 4x}} - {e^{4x}} \times {e^{ - 4t}}}}{{ - 8}}\\ &= \frac{{{e^{(4t - 4x)}} - {e^{(4x - 4t)}}}}{{ - 8}}\\ &= \frac{{{e^{4(x - t)}} - {e^{4(t - x)}}}}{8}\\ &= \frac{1}{4}\frac{{{e^{4(x - t)}} - {e^{4(t - x)}}}}{2}\\ &= \frac{1}{4}sinh4(x - t)\end{aligned}\)
To find the particular solution
\({y_p}(x) = \int_{{x_0}}^x {G(x,t)f(t)dt} \)
\( = \int_{{x_0}}^x {\frac{1}{4}sinh4(x - t)f(t)dt} \)
\( = \frac{1}{4}\int_{{x_0}}^x {sinh4(x - t)f(t)dt} \)
\({y_p}(x) = \frac{1}{4}\int_{{x_0}}^x {sinh4(x - t)f(t)dt} \)