We are given that,
\(\left( {1 - 2x - {x^2}} \right)y'' + 2(1 + x)y' - 2y = 0;\quad {y_1} = x + 1\)
This is a second order differential equation. It can be written as,
\(y'' + \frac{{2(1 + x)}}{{1 - 2x - {x^2}}}y' - \frac{2}{{1 - 2x - {x^2}}}y = 0\)
as the form,
\(y'' + p(x)y' + q(x)y = 0\).
with a first solution \({y_1} = x + 1\).
We have to obtain the second solution using the formula for reduction of order as,
\({y_2}(x) = {y_1}(x)\smallint \frac{{{e^{ - \smallint p(x)dx}}}}{{{{\left( {{y_2}(x)} \right)}^2}}}dx\)
\( - \smallint \frac{{2 + 2x}}{{1 - 2x - {x^2}}}dx = - \smallint \frac{{2 + 2x}}{{ - (2 + 2x)(u)}}du = \smallint \frac{1}{{(u)}}du = \ln |u| = \ln \left| {1 - 2x - {x^2}} \right|\)
\({y_2} = (x + 1)\smallint \frac{{{e^{\ln \left| {1 - 2x - {x^2}} \right|}}}}{{{{(x + 1)}^2}}}dx = (x + 1)\smallint \frac{{1 - 2x - {x^2}}}{{{{(x + 1)}^2}}}dx = (x + 1)\smallint \frac{{1 - 2x - {x^2}}}{{{x^2} + 2x + 1}}dx\)
Hence the value of \({y_2}(x)\)is \((x + 1)\smallint \frac{{1 - 2x - {x^2}}}{{{x^2} + 2x + 1}}dx\).