Chapter 16: Problem 30
(a) Show that the "is associate to" relation is an equivalence relation. (b) Consider an equivalence class \(C\) induced by the "is associate to" relation. Show that if \(C\) contains an irreducible element, then all elements of \(C\) are irreducible. (c) Suppose that for every equivalence class \(C\) that contains irreducibles, we choose one element of \(C,\) and call it a distinguished irreducible. Show that \(D\) is a UFD if and only if every non-zero element of \(D\) can be expressed as \(u p_{1}^{e_{1}} \cdots p_{r}^{e_{r}},\) where \(u\) is a unit, \(p_{1}, \ldots, p_{r}\) are distinguished irreducibles, and this expression is unique up to a reordering of the \(p_{i}\) 's.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.