Chapter 11: Problem 10
Consider the following problems. (a) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in \mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order \(q,\) and two elements \(\alpha, \beta \in G,\) compute \(\gamma^{x y},\) where \(x:=\log _{\gamma} \alpha\) and \(y:=\log _{\gamma} \beta .\) (This is just the Diffie-Hellman problem.) (b) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in \mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order \(q,\) and an element \(\alpha \in G,\) compute \(\gamma^{x^{2}},\) where \(x:=\log _{\gamma} \alpha\) (c) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in \mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order \(q,\) and two elements \(\alpha, \beta \in G,\) with \(\beta \neq 1\), compute \(\gamma^{x y^{\prime}},\) where \(x:=\log _{\gamma} \alpha, y^{\prime}:=y^{-1} \bmod q,\) and \(y:=\log _{\gamma} \beta\) (d) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in \mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order \(q,\) and an element \(\alpha \in G,\) with \(\alpha \neq 1,\) compute \(\gamma^{x^{\prime}},\) where \(x^{\prime}:=x^{-1} \bmod q\) and \(x:=\log _{\gamma} \alpha\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.