Consider the following problems.
(a) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in
\mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order
\(q,\) and two elements \(\alpha, \beta \in G,\) compute \(\gamma^{x y},\) where
\(x:=\log _{\gamma} \alpha\) and \(y:=\log _{\gamma} \beta .\) (This is just the
Diffie-Hellman problem.)
(b) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in
\mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order
\(q,\) and an element \(\alpha \in G,\) compute \(\gamma^{x^{2}},\) where \(x:=\log
_{\gamma} \alpha\)
(c) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in
\mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order
\(q,\) and two elements \(\alpha, \beta \in G,\) with \(\beta \neq 1\), compute
\(\gamma^{x y^{\prime}},\) where \(x:=\log _{\gamma} \alpha, y^{\prime}:=y^{-1}
\bmod q,\) and \(y:=\log _{\gamma} \beta\)
(d) Given a prime \(p,\) a prime \(q\) that divides \(p-1,\) an element \(\gamma \in
\mathbb{Z}_{p}^{*}\) generating a subgroup \(G\) of \(\mathbb{Z}_{p}^{*}\) of order
\(q,\) and an element \(\alpha \in G,\) with \(\alpha \neq 1,\) compute
\(\gamma^{x^{\prime}},\) where \(x^{\prime}:=x^{-1} \bmod q\) and \(x:=\log
_{\gamma} \alpha\)