Chapter 7: Problem 5
Obtain an order of magnitude estimate for the spring constant \(\bar{k}\) associated with the interatomic forces in a silicate crystal such as forsterite by assuming \(\bar{k} \sim E b\), where \(E\) is Young's modulus and \(b\) is the average interatomic spacing. Young's modulus for forsterite is \(1.5 \times 10^{11}\) Pa. Obtain a value for \(b\) by assuming \(b^{3}\) is the mean atomic volume. The density of forsterite is \(3200 \mathrm{~kg} \mathrm{~m}^{-3}\). Estimate the maximum amplitude of vibration of an atom in a forsterite crystal at a temperature of \(300 \mathrm{~K}\). How does it compare with the mean interatomic spacing? What is the Einstein frequency at this temperature? The spring constant may also be estimated from the compressibility of forsterite using \(\bar{k} \sim 3 b / \beta,\) where the factor of 3 arises from the relation between fractional volume changes and fractional changes in length. How does this estimate of \(\bar{k}\) compare with the previous one? The compressibility of forsterite is \(0.8 \times 10^{-11} \mathrm{~Pa}^{-1}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.