Chapter 4: Problem 11
The exponential depth dependence of heat production is preferred because it is self-preserving upon erosion. However, many alternative models can be prescribed. Consider a two-layer model with \(H=\) \(H_{1}\) and \(k=k_{1}\) for \(0 \leq y \leq h_{1},\) and \(H=H_{2}\) and \(k=k_{2}\) for \(h_{1} \leq y \leq h_{2} .\) For \(y>h_{2}, H=0\) and the upward heat flux is \(q_{m} .\) Determine the surface heat flow and temperature at \(y=h_{2}\) for \(\rho_{1}=2600 \mathrm{~kg} \mathrm{~m}^{-3}\), \(\rho_{2}=3000 \mathrm{~kg} \mathrm{~m}^{-3}, k_{1}=k_{2}=2.4 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}\) \(h_{1}=8 \mathrm{~km}, h_{2}=40 \mathrm{~km}, \rho_{1} H_{1}=2 \mu W \mathrm{~m}^{-3}, \rho_{2} H_{2}=\) \(0.36 \mu W \mathrm{~m}^{-3}, T_{0}=0^{\circ} \mathrm{C},\) and \(q_{m}=28 \mathrm{~mW} \mathrm{~m}^{-2}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.