Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

To derive an upward flow in a porous medium, it is clear that pressure must increase more rapidly with depth \(y\) than it does when the fluid is motionless. Use this idea to justify writing Darcy's law for vertical flow in a porous medium in the form $$ V=-\frac{k}{\mu}\left(\frac{d p}{d y}-\rho g\right) $$ where \(v\) is the vertical Darcy velocity (positive in the direction of increasing depth), \(\rho\) is the fluid density, and \(g\) is the acceleration of gravity. Consider a porous medium lying on an impermeable surface inclined at an angle \(\theta\) to the horizontal. Show that Darcy's law for the downslope volumetric flow rate per unit area \(q\) is $$ q=-\frac{k}{\mu}\left(\frac{d p}{d s}-\rho g \sin \theta\right) $$ where \(s\) is the downslope distance and \(q\) is positive in the direction of \(s\).

Problem 2

Consider an unconsolidated (uncemented) layer of soil completely saturated with groundwater; the water table is coincident with the surface. Show that the upward Darcy velocity \(|v|\) required to fluidize the bed is $$ |V|=\frac{(1-\phi) k g\left(\rho_{s}-\rho_{w}\right)}{\mu} $$ where \(\phi\) is the porosity, \(\rho_{s}\) is the density of the soil particles, and \(\rho_{w}\) is the water density. The condition of a fluidized bed occurs when the pressure at depth in the soil is sufficient to completely support the weight of the overburden. If the pressure exceeds this critical value, the flow can lift the soil layer.

Problem 3

Assume that a porous medium can be modeled as a cubic matrix with a dimension \(b\); the walls of each cube are channels of thickness \(\delta\). (a) Determine expressions for the porosity and permeability in terms of \(b\) and \(\delta .(b)\) What is the permeability if \(b=0.1 \mathrm{~m}\) and \(\delta=1 \mathrm{~mm} ?\)

Problem 16

Let \(h_{0}\) be the height of the laterally spreading groundwater mound at \(x=0\) and \(t=t_{0}\). Let the half-width of the mound at its base be \(l_{0}\) at \(t=t_{0}\). Show that the height of the mound at \(x=0\) and \(t=\) \(t_{0}+t^{\prime}\) is given by $$ h_{0}\left(1+\frac{6 k \rho g h_{0} t^{\prime}}{\mu \phi l_{0}^{2}}\right)^{-1 / 3} $$ In addition, demonstrate that the half-width of the mound at its base at time \(t=t_{0}+t^{\prime}\) is $$ I_{0}\left(1+\frac{6 k \rho g h_{0} t^{\prime}}{\mu \phi l_{0}^{2}}\right)^{1 / 3} $$ We next determine the height of the phreatic surface \(h\) as a function of \(x\) and \(t\) when water is introduced at \(x=0\) at a constant volumetric rate \(Q_{1}\) per unit width. For \(t<0, h\) is zero; for \(t>0,\) there is a constant input of water at \(x=0 .\) Half of the fluid flows to the right into the region \(x>0\), and half flows to the left. From Equation \((9-24)\) we can write the flow rate to the right at \(x=0+\) as $$ \frac{-k \rho g}{\mu}\left(h \frac{\partial h}{\partial x}\right)_{x=0+}=\frac{1}{2} Q_{1} $$ The water table height \(h(x, t)\) is the solution of the Boussinesq equation \((9-43)\) that satisfies condition \((9-73)\) Once again we introduce similarity variables. The appropriate similarity variables for this problem are $$ \begin{array}{l} f=\left(\frac{k \rho g \phi}{Q_{1}^{2} \mu t}\right)^{1 / 3} h \\ \xi=\left(\frac{\phi^{2} \mu}{k \rho g Q_{1} t^{2}}\right)^{1 / 3} x \end{array} $$ Aside from numerical factors these variables are the same as the ones in Equations \((9-62)\) and \((9-63)\) if we replace \(V_{1} / t\) in those equations by \(Q_{1}\). The introduction of these similarity variables into the Boussinesq equation yields $$ f \frac{d^{2} f}{d \xi^{2}}+\left(\frac{d f}{d \xi}\right)^{2}+\frac{2}{3} \xi \frac{d f}{d \xi}-\frac{1}{3} f=0 $$ The boundary condition at \(x=0+\) given in Equation \((9-73)\) becomes $$ \left(f \frac{d f}{d \xi}\right)_{\xi=0+}=-\frac{1}{2} $$

Problem 21

Consider the upwelling of a mixture of water and steam in a porous medium. Because of the cold temperatures near the surface, the mixture will reach a level where all the steam must abruptly condense. There will be a phase charge interface with upwelling water just above the boundary and upwelling steam and water just below it. Show that the temperature gradient immediately above the interface \((d T / d y)_{2}\) is larger than the temperature gradient just below the interface \((d T / d y)_{1}\) by the amount \(-L \rho_{s} V_{s},\) where \(L\) is the latent heat of the steam-water phase change, \(\rho_{s}\) is the density of the steam, and \(-v_{s}\) is the upwelling Darcy velocity of the steam.

Problem 27

Consider a porous layer saturated with water that is at the boiling temperature at all depths. Show that the temperature-depth profile is given by $$ \frac{1}{T_{b 0}}-\frac{1}{T}=\frac{R_{V}}{L} \ln \left(1+\frac{\rho_{l} g_{y}}{p_{0}}\right) $$ where \(T_{b 0}\) is the boiling temperature of water at atmospheric pressure \(p_{0}, \rho_{l}\) is the density of liquid water which is assumed constant, and \(R_{V}\) is the gas constant for water vapor. Start with the hydrostatic equation for the pressure and derive an equation for \(d T / d y\) by using the formula for the slope of the Clapeyron curve between water and steam $$ \frac{d p}{d T}=\frac{L \rho_{I} \rho_{v}}{T\left(\rho_{l}-\rho_{v}\right)} \approx \frac{L \rho_{v}}{T} $$ where \(\rho_{V}\) is the density of water vapor. Assume that steam is a perfect gas so that $$ \rho_{v}=\frac{p}{R_{v} T} $$ Finally, note that \(p=p_{0}+\rho_{l} g y\) if \(\rho_{l}\) is assumed constant. What is the temperature at a depth of \(1 \mathrm{~km} ?\) $$ \text { Take } R_{V}=0.462 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, L=2500 \mathrm{~kJ} \mathrm{~kg}^{-1}, T_{b 0}= $$ \(373 \mathrm{~K}, p_{0}=10^{5} \mathrm{~Pa}, \rho_{l}=1000 \mathrm{~kg} \mathrm{~m}^{-3}, g=10 \mathrm{~m} \mathrm{~s}^{-2}\)

Problem 28

Calculate pressure as a function of depth in a vapor-dominated geothermal system consisting of a near-surface liquid layer \(400 \mathrm{~m}\) thick overlying a wet steam reservoir in which the pressurecontrolling phase is vapor. Assume that the hydrostatic law is applicable and that the liquid layer is at the boiling temperature throughout. Assume also that the steam reservoir is isothermal.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Geography Textbooks