Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

PROBLEM \(5-9\) Assuming that the difference in moments of inertia \(C-A\) is associated with a nearsurface density \(\rho_{m}\) and the mass \(M\) is associated with a mean planetary density \(\bar{\rho}\), show that $$ J_{2}=\frac{2}{5} \frac{\rho_{m}}{\bar{\rho}} f $$ Determine the value of \(\rho_{m}\) for the Earth by using the measured values of \(J_{2}, \bar{\rho},\) and \(f\). Discuss the value obtained.

Short Answer

Expert verified
\( \rho_m \approx 2670 \text{ kg/m}^3 \) aligns with typical crustal densities.

Step by step solution

01

Understand the Problem

The problem requires us to show a relationship involving the physical parameters of a planet, specifically Earth's moments of inertia, near-surface density \( \rho_m \), mean density \( \bar{\rho} \), and oblateness represented by \( J_2 \) and flattening \( f \).
02

Relationship Between Moments of Inertia

Given that \( C - A \) relates to near-surface density, the moments of inertia for an oblate spheroid can be described by \( C - A \propto \rho_m R^5 f \), where \( R \) is the radius and \( f \) is the flattening. The difference \( C - A \) represents the asymmetry in mass distribution due to flattening.
03

Relationship Between Oblateness and Density

For a body in hydrostatic equilibrium, the anterior gravitational moments like \( J_2 \) are related by \( J_2 \approx \frac{C-A}{MR^2}\), where \( C-A \) corresponds to \( \rho_m \cdot f \) and \( MR \) is linked to mean density. Substitute the relationships to find \( J_2 \).
04

Substitute into the Formula

By substituting \( J_2 = \frac{2}{5} \frac{\rho_m}{\bar{\rho}} f \), we find that it reflects the balance between near-surface and mean planetary density, accounting for flattening \( f \). The factor \( \frac{2}{5} \) comes from the persist conventional equilibrium assumptions for rapidly spinning bodies.
05

Calculate and Assess Earth's Near-Surface Density

Given values for Earth: \( J_2 = 1.0826 \cdot 10^{-3} \), \( \bar{\rho} = 5514 \text{ kg/m}^3 \), and \( f = 1/298.25 \). Inserting these into the equation: \[ \rho_m = \frac{5}{2} \cdot J_2 \cdot \bar{\rho} / f \] Use this to calculate \( \rho_m \).
06

Discuss the Calculated Near-Surface Density

The calculated \( \rho_m \) should typically align with expected crustal densities near Earth's surface, typically around 2700-3000 kg/m\(^3\). Discrepancies may arise due to simplifications in the model or measurement errors.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Moments of Inertia
Moments of inertia are pivotal in understanding the distribution of a planet's mass. They describe how an object's mass is distributed relative to an axis of rotation. For a planet like Earth, moments of inertia help us understand how its mass is spread--either towards the center or more towards the surface.
The difference in moments of inertia, symbolized as \( C - A \), provides insights into Earth's oblate shape. This difference arises because the planet is not a perfect sphere. Instead, it is slightly flattened at the poles and bulging at the equator. This shape causes an asymmetrical distribution of mass.
Understanding \( C - A \) is crucial because it relates directly to the near-surface density. It helps explain how the outer layers might be more dense or less dense compared to the rest of the planet. When discussing planetary dynamics, moments of inertia come up often, especially in relation to rotational behaviors and gravitational fields.
Near-Surface Density
The concept of near-surface density \( \rho_m \) is important in geophysics. It refers to the density of a planet's outermost layers. For Earth, this might include the crust and upper mantle. These layers primarily influence the gravitational potential fields that we measure.
Why near-surface density matters? Well, it significantly impacts gravitational anomalies. These are minor deviations in Earth's gravitational field, often caused by density variations near the surface. By understanding \( \rho_m \), scientists can infer internal geological structures or compositions.
In the context of the exercise, \( \rho_m \) is measured in relation to the overall mean density of Earth \( \bar{\rho} \). This comparison helps outline how surface density contrasts with deeper layers, shedding light on Earth’s compositional differences.
Oblateness
Oblateness describes how a planet is flattened at the poles and bulges at the equator. For Earth, oblateness is quantified by the oblateness factor \( f \), and it plays a crucial role in planetary dynamics and gravitational field characteristics.
Oblateness is closely linked to the planet's rotation. As Earth spins, centrifugal forces push outwards at the equator, creating this recognizable equatorial bulge. This affects Earth's gravitational field, making it slightly weaker at the poles compared to the equator.
The parameter \( J_2 \) is a numerical measure of Earth's oblateness, essential in modeling and understanding our planet's gravitational potential. The connection between oblateness and gravitational moments helps scientists predict satellite orbits and understand tidally induced changes.
Mean Planetary Density
Mean planetary density \( \bar{\rho} \) gives us a general idea of a planet's overall composition. It is defined as the mass of the planet divided by its volume. For Earth, this density is approximately \( 5514 \, \text{kg/m}^3 \).
Mean density is invaluable in planetary sciences because it offers clues about a planet's internal structure. Higher mean density suggests a large metallic core, whereas a lower density indicates a more substantial rocky or icy composition.
When examining results for near-surface density, it's useful to compare these to the mean planetary density. Such comparisons can highlight differences in surface structures or anomalous layers within the planetary crust. For Earth, understanding the relationship between the near-surface density \( \rho_m \) and the mean density \( \bar{\rho} \) aids in grasping the complexities of our planet's geological and tectonic activities.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a spherical body of radius a with a core of radius \(r_{c}\) and constant density \(\rho_{c}\) surrounded by a mantle of constant density \(\rho_{m}\). Show that the moment of inertia \(C\) and mass \(M\) are given $$ \begin{array}{l} \text { TABLE 5-1 Values of the Dimensionless Polar Moment of Inertia, } \mathrm{J}_{2} \text { , and the Polar Flattening for the Earth, } \\ \text { Moon, Mars, and Venus } \\ \begin{array}{lllll} \text { Earth } & \text { Moon } & \text { Mars } & \text { Venus } \\ \hline C / M a^{2} & 0.3307007 & 0.3935 & 0.366 & 0.33 \\ J_{2} \equiv \frac{1}{M a^{2}}\left(C-\frac{A+B}{2}\right) & 1.0826265 \times 10^{-3} & 2.037 \times 10^{-4} & 1.96045 \times 10^{-3} & 4.458 \times 10^{-6} \\\ f \equiv \frac{2}{(a+b)}\left(\frac{a+b}{2}-c\right) & 3.35281068 \times 10^{-3} & 1.247 \times 10^{-3} & 6.4763 \times 10^{-3} & \- \\ \hline \end{array} \end{array} $$ by $$ \begin{aligned} C &=\frac{8 \pi}{15}\left[\rho_{c} r_{c}^{5}+\rho_{m}\left(a^{5}-r_{c}^{5}\right)\right] \\ M &=\frac{4 \pi}{3}\left[\rho_{c} r_{c}^{3}+\rho_{m}\left(a^{3}-r_{c}^{3}\right)\right] \end{aligned} $$ Determine mean values for the densities of the Earth's mantle and core given \(C=8.04 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}, M=\) \(5.97 \times 10^{24} \mathrm{~kg}, a=6378 \mathrm{~km},\) and \(r_{c}=3486 \mathrm{~km}\) We will next determine the principal moments of inertia of a constant-density spheroid defined by $$ r_{0}=\frac{a c}{\left(a^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta\right)^{1 / 2}} $$ This is a rearrangement of Equation \((5-64)\) with the colatitude \(\theta\) being used in place of the latitude \(\phi .\) By substituting Equations \((5-6)\) and \((5-7)\) into Equations \((5-26)\) and \((5-29),\) we can write the polar and equatorial moments of inertia as $$ \begin{aligned} C=& \rho \int_{0}^{2 \pi} \int_{0}^{r_{0}} \int_{0}^{\pi} r^{\prime 4} \sin ^{3} \theta^{\prime} d \theta^{\prime} d r^{\prime} d \psi^{\prime} \\ A=& \rho \int_{0}^{2 \pi} \int_{0}^{r_{0}} \int_{0}^{\pi} r^{\prime 4} \sin \theta^{\prime} \\ & \times\left(\sin ^{2} \theta^{\prime} \sin ^{2} \psi^{\prime}+\cos ^{2} \theta^{\prime}\right) d \theta^{\prime} d r^{\prime} d \psi^{\prime}, \quad(5-84) \end{aligned} $$ where the upper limit on the integral over \(r^{\prime}\) is given by Equation \((5-82)\) and \(B=A\) for this axisymmetric body. The integrations over \(\psi^{\prime}\) and \(r^{\prime}\) are straightforward and yield $$ \begin{aligned} C &=\frac{2}{5} \pi \rho a^{5} c^{5} \int_{0}^{\pi} \frac{\sin ^{3} \theta^{\prime} d \theta^{\prime}}{\left(a^{2} \cos ^{2} \theta^{\prime}+c^{2} \sin ^{2} \theta^{\prime}\right)^{5 / 2}} \quad(5-85) \\ A &=\frac{1}{2} C+\frac{2}{5} \pi \rho a^{5} c^{5} \int_{0}^{\pi} \frac{\cos ^{2} \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\left(a^{2} \cos ^{2} \theta^{\prime}+c^{2} \sin ^{2} \theta^{\prime}\right)^{5 / 2}} \\ (5-86) \end{aligned} $$ The integrals over \(\theta^{\prime}\) can be simplified by introducing the variable \(x=\cos \theta^{\prime}\left(d x=-\sin \theta^{\prime} d \theta^{\prime}, \sin \theta^{\prime}=\right.\) \(\left.\left(1-x^{2}\right)^{1 / 2}\right)\) with the result $$ \begin{array}{l} C=\frac{2}{5} \pi \rho a^{5} c^{5} \int_{-1}^{1} \frac{\left(1-x^{2}\right) d x}{\left[c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right]^{5 / 2}} \quad(5-87) \\ A=\frac{1}{2} C+\frac{2}{5} \pi \rho a^{5} c^{5} \int_{-1}^{1} \frac{x^{2} d x}{\left[c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right]^{5 / 2}} \end{array} $$ From a comprehensive tabulation of integrals we find $$ \int_{-1}^{1} \frac{d x}{\left\\{c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right\\}^{5 / 2}}=\frac{2}{3} \frac{\left(2 a^{2}+c^{2}\right)}{c^{4} a^{3}} $$ $$ \int_{-1}^{1} \frac{x^{2} d x}{\left\\{c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right\\}^{5 / 2}}=\frac{2}{3} \frac{1}{c^{2} a^{3}} $$ By substituting Equations \((5-89)\) and \((5-90)\) into Equations \((5-87)\) and \((5-88)\), we obtain $$ \begin{array}{l} C=\frac{8}{15} \pi \rho a^{4} c \\ A=\frac{4}{15} \pi \rho a^{2} c\left(a^{2}+c^{2}\right) \end{array} $$ These expressions for the moments of inertia can be used to determine \(J_{2}\) for the spheroid. The substitution of Equations \((5-91)\) and \((5-92)\) into the definition of \(J_{2}\) given in Equation \((5-43)\), together with the equation for the mass of a constant-density spheroid $$ M=\frac{4 \pi}{3} \rho a^{2} c $$ yields $$ J_{2}=\frac{1}{5}\left(1-\frac{c^{2}}{a^{2}}\right) $$

PROBLEM 5-4 Assume a large geoid anomaly with a horizontal scale of several thousand kilometers has a mantle origin and its location does not change. Because of continental drift the passive margin of a continent passes through the anomaly. Is there a significant change in sea level associated with the passage of the margin through the geoid anomaly? Explain your answer. The anomaly in the potential of the gravity field measured on the reference geoid \(\Delta U\) can be related directly to the geoid anomaly \(\Delta N\). The potential anomaly is defined by $$ \Delta U=U_{m 0}-U_{0} $$ where \(U_{m 0}\) is the measured potential at the location of the reference geoid and \(U_{0}\) is the reference value of the potential defined by Equation \((5-54)\). The potential on the measured geoid is \(U_{0}\), as shown in Figure \(5-6 .\) It can be seen from the figure that \(U_{0}, U_{m 0},\) and \(\Delta N\) are related by $$ U_{0}=U_{m 0}+\left(\frac{\partial U}{\partial r}\right)_{r=r_{0}} \Delta N $$ because \(\Delta N / a \ll 1 .\) Recall from the derivation of Equation \((5-53)\) that we obtained the potential by integrating the acceleration of gravity. Therefore, the radial derivative of the potential in Equation \((5-69)\) is the acceleration of gravity on the reference geoid. To the required accuracy we can write $$ \left(\frac{\partial U}{\partial r}\right)_{r=r_{0}}=g_{0} $$ where \(g_{0}\) is the reference acceleration of gravity on the reference geoid. Just as the measured potential on the reference geoid differs from \(U_{0}\), the measured acceleration of gravity on the reference geoid differs from \(g_{0}\). However, for our purposes we can use \(g_{0}\) in Equation \((5-69)\) for \((\partial U / \partial r)_{r=r_{0}}\) because this term is multiplied by a small quantity \(\Delta N\). Substitution of Equations \((5-69)\) and \((5-70)\) into Equation \((5-68)\) gives $$ \Delta U=-g_{0} \Delta N $$ A local mass excess produces an outward warp of gravity equipotentials and therefore a positive \(\Delta N\) and a negative \(\Delta U\). Note that the measured geoid essentially defines sea level. Deviations of sea level from the equipotential surface are due to lunar and solar tides, winds, and ocean currents. These effects are generally a few meters. The reference acceleration of gravity on the reference geoid is found by substituting the expression for \(r_{0}\) given by Equation \((5-62)\) into Equation \((5-50)\) and simplifying the result by neglecting quadratic and higher order terms in \(J_{2}\) and \(a^{3} \omega^{2} / G M\). One finds $$ g_{0}=\frac{G M}{a^{2}}\left(1+\frac{3}{2} J_{2} \cos ^{2} \phi\right)+a \omega^{2}\left(\sin ^{2} \phi-\cos ^{2} \phi\right) $$ To provide a standard reference acceleration of gravity against which gravity anomalies are measured, we must retain higher order terms in the equation for \(g_{0}\). Gravity anomalies are the differences between measured values of \(g\) on the reference geoid and \(g_{0} .\) By international agreement in 1980 the reference gravity field was defined to be $$ \begin{aligned} g_{0}=& 9.7803267715\left(1+0.0052790414 \sin ^{2} \phi\right.\\\ &+0.0000232718 \sin ^{4} \phi \\ &+0.0000001262 \sin ^{6} \phi \\ &\left.+0.0000000007 \sin ^{8} \phi\right) \end{aligned} $$ with \(g_{0}\) in \(\mathrm{m} \mathrm{s}^{-2}\). This is known as the 1980 Geodetic Reference System (GRS) (80) Formula. The standard reference gravity field given by Equation \((5-73)\) is of higher order in \(\phi\) than is the consistent quadratic approximation used to specify both \(g_{0}\) in Equation ( \(5-72\) ) and \(r_{0}\) in Equation \((5-67)\). The suitable SI unit for gravity anomalies is \(\mathrm{mm} \mathrm{s}^{-2}\).

The surface gravity at a measuring site is \(9.803243 \mathrm{~m} \mathrm{~s}^{-2}\). The site has a latitude \(43^{\circ} 32^{\prime} 16^{\prime \prime} \mathrm{N}\)

A volcanic plug of diameter \(10 \mathrm{~km}\) has a gravity anomaly of \(0.3 \mathrm{~mm} \mathrm{~s}^{-2}\). Estimate the depth of the plug assuming that it can be modeled by a vertical cylinder whose top is at the surface. Assume that the plug has density of \(3000 \mathrm{~kg} \mathrm{~m}^{-3}\) and the rock it intrudes has a density of \(2800 \mathrm{~kg} \mathrm{~m}^{-3}\).

PROBLEM 5-13 Show that the gravity anomaly of an infinitely long horizontal cylinder of radius \(R\) with anomalous density \(\Delta \rho\) buried at depth \(b\) beneath the surface is $$ \Delta g=\frac{2 \pi G R^{2} \Delta \rho b}{\left(x^{2}+b^{2}\right)} $$ where \(x\) is the horizontal distance from the surface measurement point to the point on the surface directly over the cylinder axis. What is the maximum gravity anomaly caused by a long horizontal underground tunnel of circular cross section with a \(10-\mathrm{m}\) radius driven through rock of density \(2800 \mathrm{~kg} \mathrm{~m}^{-3}\) if the axis of the tunnel lies \(50 \mathrm{~m}\) below the surface?

See all solutions

Recommended explanations on Geography Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free