Chapter 5: Problem 8
Consider a spherical body of radius a with a core of radius \(r_{c}\) and constant density \(\rho_{c}\) surrounded by a mantle of constant density \(\rho_{m}\). Show that the moment of inertia \(C\) and mass \(M\) are given $$ \begin{array}{l} \text { TABLE 5-1 Values of the Dimensionless Polar Moment of Inertia, } \mathrm{J}_{2} \text { , and the Polar Flattening for the Earth, } \\ \text { Moon, Mars, and Venus } \\ \begin{array}{lllll} \text { Earth } & \text { Moon } & \text { Mars } & \text { Venus } \\ \hline C / M a^{2} & 0.3307007 & 0.3935 & 0.366 & 0.33 \\ J_{2} \equiv \frac{1}{M a^{2}}\left(C-\frac{A+B}{2}\right) & 1.0826265 \times 10^{-3} & 2.037 \times 10^{-4} & 1.96045 \times 10^{-3} & 4.458 \times 10^{-6} \\\ f \equiv \frac{2}{(a+b)}\left(\frac{a+b}{2}-c\right) & 3.35281068 \times 10^{-3} & 1.247 \times 10^{-3} & 6.4763 \times 10^{-3} & \- \\ \hline \end{array} \end{array} $$ by $$ \begin{aligned} C &=\frac{8 \pi}{15}\left[\rho_{c} r_{c}^{5}+\rho_{m}\left(a^{5}-r_{c}^{5}\right)\right] \\ M &=\frac{4 \pi}{3}\left[\rho_{c} r_{c}^{3}+\rho_{m}\left(a^{3}-r_{c}^{3}\right)\right] \end{aligned} $$ Determine mean values for the densities of the Earth's mantle and core given \(C=8.04 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}, M=\) \(5.97 \times 10^{24} \mathrm{~kg}, a=6378 \mathrm{~km},\) and \(r_{c}=3486 \mathrm{~km}\) We will next determine the principal moments of inertia of a constant-density spheroid defined by $$ r_{0}=\frac{a c}{\left(a^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta\right)^{1 / 2}} $$ This is a rearrangement of Equation \((5-64)\) with the colatitude \(\theta\) being used in place of the latitude \(\phi .\) By substituting Equations \((5-6)\) and \((5-7)\) into Equations \((5-26)\) and \((5-29),\) we can write the polar and equatorial moments of inertia as $$ \begin{aligned} C=& \rho \int_{0}^{2 \pi} \int_{0}^{r_{0}} \int_{0}^{\pi} r^{\prime 4} \sin ^{3} \theta^{\prime} d \theta^{\prime} d r^{\prime} d \psi^{\prime} \\ A=& \rho \int_{0}^{2 \pi} \int_{0}^{r_{0}} \int_{0}^{\pi} r^{\prime 4} \sin \theta^{\prime} \\ & \times\left(\sin ^{2} \theta^{\prime} \sin ^{2} \psi^{\prime}+\cos ^{2} \theta^{\prime}\right) d \theta^{\prime} d r^{\prime} d \psi^{\prime}, \quad(5-84) \end{aligned} $$ where the upper limit on the integral over \(r^{\prime}\) is given by Equation \((5-82)\) and \(B=A\) for this axisymmetric body. The integrations over \(\psi^{\prime}\) and \(r^{\prime}\) are straightforward and yield $$ \begin{aligned} C &=\frac{2}{5} \pi \rho a^{5} c^{5} \int_{0}^{\pi} \frac{\sin ^{3} \theta^{\prime} d \theta^{\prime}}{\left(a^{2} \cos ^{2} \theta^{\prime}+c^{2} \sin ^{2} \theta^{\prime}\right)^{5 / 2}} \quad(5-85) \\ A &=\frac{1}{2} C+\frac{2}{5} \pi \rho a^{5} c^{5} \int_{0}^{\pi} \frac{\cos ^{2} \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\left(a^{2} \cos ^{2} \theta^{\prime}+c^{2} \sin ^{2} \theta^{\prime}\right)^{5 / 2}} \\ (5-86) \end{aligned} $$ The integrals over \(\theta^{\prime}\) can be simplified by introducing the variable \(x=\cos \theta^{\prime}\left(d x=-\sin \theta^{\prime} d \theta^{\prime}, \sin \theta^{\prime}=\right.\) \(\left.\left(1-x^{2}\right)^{1 / 2}\right)\) with the result $$ \begin{array}{l} C=\frac{2}{5} \pi \rho a^{5} c^{5} \int_{-1}^{1} \frac{\left(1-x^{2}\right) d x}{\left[c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right]^{5 / 2}} \quad(5-87) \\ A=\frac{1}{2} C+\frac{2}{5} \pi \rho a^{5} c^{5} \int_{-1}^{1} \frac{x^{2} d x}{\left[c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right]^{5 / 2}} \end{array} $$ From a comprehensive tabulation of integrals we find $$ \int_{-1}^{1} \frac{d x}{\left\\{c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right\\}^{5 / 2}}=\frac{2}{3} \frac{\left(2 a^{2}+c^{2}\right)}{c^{4} a^{3}} $$ $$ \int_{-1}^{1} \frac{x^{2} d x}{\left\\{c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right\\}^{5 / 2}}=\frac{2}{3} \frac{1}{c^{2} a^{3}} $$ By substituting Equations \((5-89)\) and \((5-90)\) into Equations \((5-87)\) and \((5-88)\), we obtain $$ \begin{array}{l} C=\frac{8}{15} \pi \rho a^{4} c \\ A=\frac{4}{15} \pi \rho a^{2} c\left(a^{2}+c^{2}\right) \end{array} $$ These expressions for the moments of inertia can be used to determine \(J_{2}\) for the spheroid. The substitution of Equations \((5-91)\) and \((5-92)\) into the definition of \(J_{2}\) given in Equation \((5-43)\), together with the equation for the mass of a constant-density spheroid $$ M=\frac{4 \pi}{3} \rho a^{2} c $$ yields $$ J_{2}=\frac{1}{5}\left(1-\frac{c^{2}}{a^{2}}\right) $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.