Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a spherical body of radius a with a core of radius \(r_{c}\) and constant density \(\rho_{c}\) surrounded by a mantle of constant density \(\rho_{m}\). Show that the moment of inertia \(C\) and mass \(M\) are given $$ \begin{array}{l} \text { TABLE 5-1 Values of the Dimensionless Polar Moment of Inertia, } \mathrm{J}_{2} \text { , and the Polar Flattening for the Earth, } \\ \text { Moon, Mars, and Venus } \\ \begin{array}{lllll} \text { Earth } & \text { Moon } & \text { Mars } & \text { Venus } \\ \hline C / M a^{2} & 0.3307007 & 0.3935 & 0.366 & 0.33 \\ J_{2} \equiv \frac{1}{M a^{2}}\left(C-\frac{A+B}{2}\right) & 1.0826265 \times 10^{-3} & 2.037 \times 10^{-4} & 1.96045 \times 10^{-3} & 4.458 \times 10^{-6} \\\ f \equiv \frac{2}{(a+b)}\left(\frac{a+b}{2}-c\right) & 3.35281068 \times 10^{-3} & 1.247 \times 10^{-3} & 6.4763 \times 10^{-3} & \- \\ \hline \end{array} \end{array} $$ by $$ \begin{aligned} C &=\frac{8 \pi}{15}\left[\rho_{c} r_{c}^{5}+\rho_{m}\left(a^{5}-r_{c}^{5}\right)\right] \\ M &=\frac{4 \pi}{3}\left[\rho_{c} r_{c}^{3}+\rho_{m}\left(a^{3}-r_{c}^{3}\right)\right] \end{aligned} $$ Determine mean values for the densities of the Earth's mantle and core given \(C=8.04 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}, M=\) \(5.97 \times 10^{24} \mathrm{~kg}, a=6378 \mathrm{~km},\) and \(r_{c}=3486 \mathrm{~km}\) We will next determine the principal moments of inertia of a constant-density spheroid defined by $$ r_{0}=\frac{a c}{\left(a^{2} \cos ^{2} \theta+c^{2} \sin ^{2} \theta\right)^{1 / 2}} $$ This is a rearrangement of Equation \((5-64)\) with the colatitude \(\theta\) being used in place of the latitude \(\phi .\) By substituting Equations \((5-6)\) and \((5-7)\) into Equations \((5-26)\) and \((5-29),\) we can write the polar and equatorial moments of inertia as $$ \begin{aligned} C=& \rho \int_{0}^{2 \pi} \int_{0}^{r_{0}} \int_{0}^{\pi} r^{\prime 4} \sin ^{3} \theta^{\prime} d \theta^{\prime} d r^{\prime} d \psi^{\prime} \\ A=& \rho \int_{0}^{2 \pi} \int_{0}^{r_{0}} \int_{0}^{\pi} r^{\prime 4} \sin \theta^{\prime} \\ & \times\left(\sin ^{2} \theta^{\prime} \sin ^{2} \psi^{\prime}+\cos ^{2} \theta^{\prime}\right) d \theta^{\prime} d r^{\prime} d \psi^{\prime}, \quad(5-84) \end{aligned} $$ where the upper limit on the integral over \(r^{\prime}\) is given by Equation \((5-82)\) and \(B=A\) for this axisymmetric body. The integrations over \(\psi^{\prime}\) and \(r^{\prime}\) are straightforward and yield $$ \begin{aligned} C &=\frac{2}{5} \pi \rho a^{5} c^{5} \int_{0}^{\pi} \frac{\sin ^{3} \theta^{\prime} d \theta^{\prime}}{\left(a^{2} \cos ^{2} \theta^{\prime}+c^{2} \sin ^{2} \theta^{\prime}\right)^{5 / 2}} \quad(5-85) \\ A &=\frac{1}{2} C+\frac{2}{5} \pi \rho a^{5} c^{5} \int_{0}^{\pi} \frac{\cos ^{2} \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\left(a^{2} \cos ^{2} \theta^{\prime}+c^{2} \sin ^{2} \theta^{\prime}\right)^{5 / 2}} \\ (5-86) \end{aligned} $$ The integrals over \(\theta^{\prime}\) can be simplified by introducing the variable \(x=\cos \theta^{\prime}\left(d x=-\sin \theta^{\prime} d \theta^{\prime}, \sin \theta^{\prime}=\right.\) \(\left.\left(1-x^{2}\right)^{1 / 2}\right)\) with the result $$ \begin{array}{l} C=\frac{2}{5} \pi \rho a^{5} c^{5} \int_{-1}^{1} \frac{\left(1-x^{2}\right) d x}{\left[c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right]^{5 / 2}} \quad(5-87) \\ A=\frac{1}{2} C+\frac{2}{5} \pi \rho a^{5} c^{5} \int_{-1}^{1} \frac{x^{2} d x}{\left[c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right]^{5 / 2}} \end{array} $$ From a comprehensive tabulation of integrals we find $$ \int_{-1}^{1} \frac{d x}{\left\\{c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right\\}^{5 / 2}}=\frac{2}{3} \frac{\left(2 a^{2}+c^{2}\right)}{c^{4} a^{3}} $$ $$ \int_{-1}^{1} \frac{x^{2} d x}{\left\\{c^{2}+\left(a^{2}-c^{2}\right) x^{2}\right\\}^{5 / 2}}=\frac{2}{3} \frac{1}{c^{2} a^{3}} $$ By substituting Equations \((5-89)\) and \((5-90)\) into Equations \((5-87)\) and \((5-88)\), we obtain $$ \begin{array}{l} C=\frac{8}{15} \pi \rho a^{4} c \\ A=\frac{4}{15} \pi \rho a^{2} c\left(a^{2}+c^{2}\right) \end{array} $$ These expressions for the moments of inertia can be used to determine \(J_{2}\) for the spheroid. The substitution of Equations \((5-91)\) and \((5-92)\) into the definition of \(J_{2}\) given in Equation \((5-43)\), together with the equation for the mass of a constant-density spheroid $$ M=\frac{4 \pi}{3} \rho a^{2} c $$ yields $$ J_{2}=\frac{1}{5}\left(1-\frac{c^{2}}{a^{2}}\right) $$

Short Answer

Expert verified
Solve simultaneous equations for \(\rho_{c}\) and \(\rho_{m}\) with given \(C\) and \(M\).

Step by step solution

01

Understanding the Problem

We are given a spherical body with a core and mantle, with densities \(\rho_{c}\) and \(\rho_{m}\) respectively. We need to use given formulas to calculate the moment of inertia \(C\) and mass \(M\), and find the mean densities \(\rho_{c}\) and \(\rho_{m}\) of the Earth's core and mantle.
02

Analyze Given Formulas

The moments of inertia and mass of the spherical body are given by:\[C = \frac{8 \pi}{15}\left[\rho_{c} r_{c}^{5}+\rho_{m}(a^{5}-r_{c}^{5})\right]\and \M = \frac{4 \pi}{3}\left[\rho_{c} r_{c}^{3}+\rho_{m}(a^{3}-r_{c}^{3})\right]\] These equations involve the densities of the core and mantle.
03

Substitute Given Values

Let's substitute the known values from the problem:\(C = 8.04 \times 10^{37} \mathrm{~kg} \mathrm{~m}^{2}\), \(M = 5.97 \times 10^{24} \mathrm{~kg}\), core radius \(r_{c} = 3486 \text{ km} = 3.486 \times 10^{6} \text{ m}\), and total radius \(a = 6378 \text{ km} = 6.378 \times 10^{6} \text{ m}\).
04

Solve for \(\rho_{c}\) and \(\rho_{m}\)

We now have two equations with two unknowns \(\rho_{c}\) and \(\rho_{m}\): 1. \(C = \frac{8 \pi}{15}\left[\rho_{c} r_{c}^{5}+\rho_{m}(a^{5}-r_{c}^{5})\right]\)2. \(M = \frac{4 \pi}{3}\left[\rho_{c} r_{c}^{3}+\rho_{m}(a^{3}-r_{c}^{3})\right]\)We need to solve these equations simultaneously.
05

Calculate \(\rho_{c}\) and \(\rho_{m}\)

Rewriting the mass equation in terms of \(\rho_{m}\):\[\rho_{m} = \frac{M \left(\frac{4 \pi}{3}\right) - \rho_{c} r_{c}^{3}}{a^{3}-r_{c}^{3}}\]Substitute \(\rho_{m}\) back into the moment of inertia equation to compute \(\rho_{c}\), then use this \(\rho_{c}\) to find \(\rho_{m}\).
06

Final Calculation and Verification

After solving the simultaneous equations, you should obtain numerical values for \(\rho_{c}\) and \(\rho_{m}\). Check that these satisfy both the moment of inertia and mass equations to ensure there is no error.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Density
Density is the measure of mass per unit volume, and it is a crucial concept in understanding the distribution of mass within different parts of a spherical body like the Earth. The density of an object is calculated by dividing its mass by its volume:\[\text{Density} = \frac{\text{Mass}}{\text{Volume}}\]In the context of geophysics, density plays a significant role in determining the moment of inertia and other physical properties of celestial bodies. For the given exercise about the Earth's core and mantle, the densities of these layers, represented as \(\rho_{c}\) and \(\rho_{m}\), are essential for calculating how the mass and inertia are distributed. This distribution affects how the earth responds to rotational forces.
  • The core, with its higher density \(\rho_{c}\), contributes significantly to the moment of inertia compared to the less dense mantle.
  • Understanding density differences helps in assessing the internal structure and dynamics of planetary bodies.
Spherical Body
A spherical body is a three-dimensional object where all points on the surface are equidistant from the center. This property simplifies the mathematical modeling of physical phenomena like gravitational effects and rotational dynamics. In the given problem, the Earth is considered primarily as a spherical body to calculate the moment of inertia:
  • The earth is not a perfect sphere but is often approximated as such for easier calculations.
  • The moment of inertia formula for a sphere incorporates its radius and density, reflecting how mass is distributed throughout.
The simplification of the Earth's shape into a sphere allows using classical physics equations to approximate real-world phenomena. This is essential for many calculations in geophysics, including understanding rotational dynamics and gravitational interactions.
Core and Mantle
The Earth's internal structure is composed of several layers, the most significant of which are the core and mantle. Each of these layers has distinct physical and chemical properties:
  • Core: The core is the innermost layer, consisting mainly of iron and nickel, and is divided into a solid inner core and a liquid outer core. The high density core \(\rho_{c}\) affects the moment of inertia significantly, providing stability to the planet's rotational characteristics.
  • Mantle: Surrounding the core is the mantle, which is composed of silicate minerals and has a lower density \(\rho_{m}\) compared to the core. The mantle plays vital roles in plate tectonics, volcanic activity, and thermal conductivity.
Studying these layers helps scientists understand various phenomena such as earthquakes and magnetic fields. Models of the Earth's core and mantle are developed to study planetary evolution and geodynamics effectively.
Geophysics
Geophysics is the scientific study of the physical processes and properties of the Earth and its surrounding space. This includes understanding gravitational forces, magnetic fields, and seismic activity. Geophysics uses principles from physics to explain the Earth’s shape, composition, and phenomena related to its subsurface:
  • Moment of Inertia in Geophysics: By calculating Earth's moment of inertia, scientists gain insights into its rotational behavior and stability, essential for forecasting changes in climate patterns and natural events.
  • Seismic Studies: Geophysicists use seismic waves to map Earth's internal structure, providing essential insights into the density variations between the core and mantle.
  • Magnetic Field Investigations: The study of the Earth's magnetic field offers valuable information on its internal processes, driven by movements within the liquid outer core.
Geophysics not only aids in understanding Earth's past but also predicts future dynamics, making it a cornerstone of earth sciences, exploration, and environmental management.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A volcanic plug of diameter \(10 \mathrm{~km}\) has a gravity anomaly of \(0.3 \mathrm{~mm} \mathrm{~s}^{-2}\). Estimate the depth of the plug assuming that it can be modeled by a vertical cylinder whose top is at the surface. Assume that the plug has density of \(3000 \mathrm{~kg} \mathrm{~m}^{-3}\) and the rock it intrudes has a density of \(2800 \mathrm{~kg} \mathrm{~m}^{-3}\).

PROBLEM 5-4 Assume a large geoid anomaly with a horizontal scale of several thousand kilometers has a mantle origin and its location does not change. Because of continental drift the passive margin of a continent passes through the anomaly. Is there a significant change in sea level associated with the passage of the margin through the geoid anomaly? Explain your answer. The anomaly in the potential of the gravity field measured on the reference geoid \(\Delta U\) can be related directly to the geoid anomaly \(\Delta N\). The potential anomaly is defined by $$ \Delta U=U_{m 0}-U_{0} $$ where \(U_{m 0}\) is the measured potential at the location of the reference geoid and \(U_{0}\) is the reference value of the potential defined by Equation \((5-54)\). The potential on the measured geoid is \(U_{0}\), as shown in Figure \(5-6 .\) It can be seen from the figure that \(U_{0}, U_{m 0},\) and \(\Delta N\) are related by $$ U_{0}=U_{m 0}+\left(\frac{\partial U}{\partial r}\right)_{r=r_{0}} \Delta N $$ because \(\Delta N / a \ll 1 .\) Recall from the derivation of Equation \((5-53)\) that we obtained the potential by integrating the acceleration of gravity. Therefore, the radial derivative of the potential in Equation \((5-69)\) is the acceleration of gravity on the reference geoid. To the required accuracy we can write $$ \left(\frac{\partial U}{\partial r}\right)_{r=r_{0}}=g_{0} $$ where \(g_{0}\) is the reference acceleration of gravity on the reference geoid. Just as the measured potential on the reference geoid differs from \(U_{0}\), the measured acceleration of gravity on the reference geoid differs from \(g_{0}\). However, for our purposes we can use \(g_{0}\) in Equation \((5-69)\) for \((\partial U / \partial r)_{r=r_{0}}\) because this term is multiplied by a small quantity \(\Delta N\). Substitution of Equations \((5-69)\) and \((5-70)\) into Equation \((5-68)\) gives $$ \Delta U=-g_{0} \Delta N $$ A local mass excess produces an outward warp of gravity equipotentials and therefore a positive \(\Delta N\) and a negative \(\Delta U\). Note that the measured geoid essentially defines sea level. Deviations of sea level from the equipotential surface are due to lunar and solar tides, winds, and ocean currents. These effects are generally a few meters. The reference acceleration of gravity on the reference geoid is found by substituting the expression for \(r_{0}\) given by Equation \((5-62)\) into Equation \((5-50)\) and simplifying the result by neglecting quadratic and higher order terms in \(J_{2}\) and \(a^{3} \omega^{2} / G M\). One finds $$ g_{0}=\frac{G M}{a^{2}}\left(1+\frac{3}{2} J_{2} \cos ^{2} \phi\right)+a \omega^{2}\left(\sin ^{2} \phi-\cos ^{2} \phi\right) $$ To provide a standard reference acceleration of gravity against which gravity anomalies are measured, we must retain higher order terms in the equation for \(g_{0}\). Gravity anomalies are the differences between measured values of \(g\) on the reference geoid and \(g_{0} .\) By international agreement in 1980 the reference gravity field was defined to be $$ \begin{aligned} g_{0}=& 9.7803267715\left(1+0.0052790414 \sin ^{2} \phi\right.\\\ &+0.0000232718 \sin ^{4} \phi \\ &+0.0000001262 \sin ^{6} \phi \\ &\left.+0.0000000007 \sin ^{8} \phi\right) \end{aligned} $$ with \(g_{0}\) in \(\mathrm{m} \mathrm{s}^{-2}\). This is known as the 1980 Geodetic Reference System (GRS) (80) Formula. The standard reference gravity field given by Equation \((5-73)\) is of higher order in \(\phi\) than is the consistent quadratic approximation used to specify both \(g_{0}\) in Equation ( \(5-72\) ) and \(r_{0}\) in Equation \((5-67)\). The suitable SI unit for gravity anomalies is \(\mathrm{mm} \mathrm{s}^{-2}\).

PROBLEM 5-13 Show that the gravity anomaly of an infinitely long horizontal cylinder of radius \(R\) with anomalous density \(\Delta \rho\) buried at depth \(b\) beneath the surface is $$ \Delta g=\frac{2 \pi G R^{2} \Delta \rho b}{\left(x^{2}+b^{2}\right)} $$ where \(x\) is the horizontal distance from the surface measurement point to the point on the surface directly over the cylinder axis. What is the maximum gravity anomaly caused by a long horizontal underground tunnel of circular cross section with a \(10-\mathrm{m}\) radius driven through rock of density \(2800 \mathrm{~kg} \mathrm{~m}^{-3}\) if the axis of the tunnel lies \(50 \mathrm{~m}\) below the surface?

PROBLEM \(5-9\) Assuming that the difference in moments of inertia \(C-A\) is associated with a nearsurface density \(\rho_{m}\) and the mass \(M\) is associated with a mean planetary density \(\bar{\rho}\), show that $$ J_{2}=\frac{2}{5} \frac{\rho_{m}}{\bar{\rho}} f $$ Determine the value of \(\rho_{m}\) for the Earth by using the measured values of \(J_{2}, \bar{\rho},\) and \(f\). Discuss the value obtained.

The surface gravity at a measuring site is \(9.803243 \mathrm{~m} \mathrm{~s}^{-2}\). The site has a latitude \(43^{\circ} 32^{\prime} 16^{\prime \prime} \mathrm{N}\)

See all solutions

Recommended explanations on Geography Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free