Chapter 4: Problem 15
Derive an expression for the temperature at the center of a planet of radius \(a\) with uniform density \(\rho\) and internal heat generation \(H\). Heat transfer in the planet is by conduction only in the lithosphere, which extends from \(r=b\) to \(r=a\). For \(0 \leq r \leq b\) heat transfer is by convection, which maintains the temperature gradient \(d T / d r\) constant at the adiabatic value \(-\Gamma\). The surface temperature is \(T_{0}\). To solve for \(T(r)\), you need to assume that \(T\) and the heat flux are continuous at \(r=b\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.