Problem 1
Determine which statements refer to weather and which refer to climate. (Note: One statement includes aspects of both weather and climate.) a. The baseball game was rained out today. b. January is Omaha's coldest month. c. North Africa is a desert. d. The high this afternoon was \(25^{\circ} \mathrm{C}\). e. Last evening a tornado ripped through central Oklahoma. f. I am moving to southern Arizona because it is warm and sunny. g. Thursday's low of \(-20^{\circ} \mathrm{C}\) is the coldest temperature ever recorded for that city. h. It is partly cloudy.
Problem 5
The circumference of Earth at the equator is 24,900 miles. Calculate how fast someone at the equator is rotating in miles per hour. If the rotational speed of Earth were to slow down, how might this impact daytime highs and nighttime lows?
Problem 6
Rank the following according to the wavelengths of radiant energy each emits, from the shortest wavelengths to the longest: a. A light bulb with a filament glowing at \(4000^{\circ} \mathrm{C}\) b. A rock at room temperature c. A car engine at \(140^{\circ} \mathrm{C}\)
Problem 8
On which summer day would you expect the greatest temperature range? Which would have the smallest range in temperature? Explain your choices. a. Cloudy skies during the day and clear skies at night b. Clear skies during the day and cloudy skies at night c. Clear skies during the day and clear skies at night d. Cloudy skies during the day and cloudy skies at night
Problem 10
This photo shows a snow-covered area in the middle latitudes on a sunny day in late winter. Assume that 1 week after this photo was taken, conditions were essentially identical, except that the snow was gone. Would you expect the air temperatures to be different on the two days? If so, which day would be warmer? Suggest an explanation.
Problem 11
The Sun shines continually at the North Pole for 6 months, from the spring equinox until the fall equinox, yet temperatures never get very warm. Explain why this is the case.