Chapter 8: Problem 5
Estimates (ref. 1) for emissions of methane to the atmosphere are given in the table below and the current atmospheric concentration is \(1.77 \mathrm{ppmv}\). Calculate its residence time. $$ \begin{array}{|lc|} \hline \text { Sources of atmospheric methane in million tonnes per year } \\ \hline \text { Wetlands and other natural sources } & 160 \\ \text { Fossil-fuel-related sources } & 100 \\ \text { Other anthropogenic sources of biological origin } & 275 \\ \hline \end{array} $$ There may be \(10^{14} \mathrm{t}\) of methane hydrate \(\left(\mathrm{CH}_{4} 6 \mathrm{H}_{2} \mathrm{O}\right)\) in the permafrost below the ocean floors. If \(1 \%\) of this were to melt per year, what would be the increased concentration of methane (ppmv \(y^{-1}\) ) in the atmosphere neglecting any removal processes? What sinks for methane would play a role in reducing this concentration?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.