Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An ideal gas at \(27 \mathrm{C}\) is Compressed adiabatically, to \(\\{8 / 27\\}\) of its original Volume. If \(\mathrm{v}=(5 / 3)\), then the rise in temperature is (A) \(225 \mathrm{k}\) (B) \(450 \mathrm{~K}\) (C) \(375 \mathrm{~K}\) (D) \(405 \mathrm{~K}\)

Short Answer

Expert verified
The rise in temperature is \(375\,K\), which corresponds to the choice (C).

Step by step solution

01

Write down the given variables

: Initial temperature, \(T_1\) = 27°C = 273 + 27 = 300 K Initial volume, \(V_1\) Final volume, \(V_2\) = 8/27 \(V_1\) Adiabatic Index, \(v\) = 5/3
02

Write down the equation for the adiabatic process

: We will use the equation for an adiabatic process of an ideal gas: \(\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{v-1}\)
03

Substitute given values into the equation

: We now substitute the given values into the equation: \(\frac{300}{T_2} = \left(\frac{8V_1 / 27V_1}{V_1}\right)^{5/3 - 1}\)
04

Solve for \(T_2\)

: Simplify the equation and solve for \(T_2\): \(\frac{300}{T_2} = \left(\frac{8}{27}\right)^{2/3}\) \(T_2 = 300 \times \left(\frac{27}{8}\right)^{2/3}\) \(T_2 = 300(1.5)^2\) Therefore, \(T_2 = 675\,K\)
05

Calculate the rise in temperature

: Now, we just need to find the difference between \(T_2\) and \(T_1\): Temperature rise = \(T_2 - T_1\) Temperature rise = \(675\,K - 300\,K\) Temperature rise = \(375\,K\) The rise in temperature is 375 K, which corresponds to the choice (C).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If a heat engine absorbs \(50 \mathrm{KJ}\) heat from a heat source and has efficiency of \(40 \%\), then the heat released by it in heat sink is (A) \(40 \mathrm{KJ}\) (B) \(30 \mathrm{KJ}\) (C) \(20 \mathrm{~J}\) (D) \(20 \mathrm{KJ}\)

In a container of negligible heat capacity, \(200 \mathrm{~g}\) ice at \(0^{\circ} \mathrm{C}\) and \(100 \mathrm{~g}\) steam at \(100^{\circ} \mathrm{C}\) are added to \(200 \mathrm{~g}\) of water that has temperature $55^{\circ} \mathrm{C}$. Assume no heat is lost to the surroundings and the pressure in the container is constant \(1 \mathrm{~atm} .\) Amount of the Sm left in the system, is equal to (A) \(16.7 \mathrm{~g}\) (B) \(8.4 \mathrm{~g}\) (C) \(12 \mathrm{~g}\) (D) \(0 \mathrm{~g}\) Copyright () StemEZ.com. All rights reserved.

For adiabatic Process which relation is true mentioned below ? \(\gamma=\left\\{\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right\\}\) (A) \(\mathrm{p}^{\gamma} \mathrm{V}=\mathrm{Const}\) (B) \(\mathrm{T}^{\gamma} \mathrm{V}=\mathrm{Const}\) (C) TV \(^{\gamma}=\) Const (D) \(\mathrm{TV}^{\gamma-1}=\) Const

Efficiency of a Carnot engine is \(50 \%\), when temperature of outlet is $500 \mathrm{~K}\(. in order to increase efficiency up to \)60 \%$ keeping temperature of intake the same what is temperature of out let. (A) \(200 \mathrm{~K}\) (B) \(400 \mathrm{~K}\) (C) \(600 \mathrm{~K}\) (D) \(800 \mathrm{~K}\)

A Carnot engine Converts one sixth of the heat input into work. When the temperature of the sink is reduced by \(62^{\circ} \mathrm{C}\) the efficiency of the engine is doubled. The temperature of the source and sink are (A) \(80^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}\) (B) \(95^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}\) (C) \(90^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}\) (D) \(99^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free