Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The temperature of a substance increases by \(27^{\circ} \mathrm{C}\) What is the value of this increase of Kelvin scale? (A) \(300 \mathrm{~K}\) (B) \(2-46 \mathrm{~K}\) (C) \(7 \mathrm{~K}\) (D) \(27 \mathrm{~K}\)

Short Answer

Expert verified
The value of the temperature increase on the Kelvin scale is \(27 \mathrm{~K}\).

Step by step solution

01

Understand the relationship between Celsius and Kelvin scales

The Celsius and Kelvin scales have the same interval or "size" between their degrees. The difference between them is that the Kelvin scale starts at absolute zero (-273.15°C), while the Celsius scale starts at the freezing point of water (0°C).
02

Convert the temperature increase from Celsius to Kelvin

Since both Celsius and Kelvin scales have the same interval, a temperature change of 27°C is equal to a temperature change of 27K.
03

Identify the correct answer

Comparing our result with the given options, we can see that the correct answer is: (D) \(27 \mathrm{~K}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A gas mixture consists of 2 mole of oxygen and 4 mole of argon at temperature \(\mathrm{T}\). Neglecting all vibrational modes, the total internal energy of the system is (A) \(11 \mathrm{RT}\) (B) \(9 \mathrm{RT}\) (C) \(15 \mathrm{RT}\) (D) \(4 \mathrm{RT}\)

A Carnot engine operating between temperature \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\) has efficiency \(0.4\), when \(\mathrm{T}_{2}\) lowered by $50 \mathrm{~K}\(, its efficiency increases to \)0.5\(. Then \)\mathrm{T}_{1}$ and \(\mathrm{T}_{2}\) are respectively. (A) \(300 \mathrm{~K}\) and \(100 \mathrm{~K}\) (B) \(400 \mathrm{~K}\) and \(200 \mathrm{~K}\) (C) \(600 \mathrm{~K}\) and \(400 \mathrm{~K}\) (D) \(500 \mathrm{~K}\) and \(300 \mathrm{~K}\)

An ideal gas heat engine is operating between \(227^{\circ} \mathrm{C}\) and \(127^{\circ} \mathrm{C}\). It absorbs \(10^{4} \mathrm{~J}\) Of heat at the higher temperature. The amount of heat Converted into. work is \(\ldots \ldots\) J. (A)2000 (B) 4000 (C) 5600 (D) 8000

Instructions:Read the assertion and reason carefully to mask the correct option out of the options given below. (A) If both assertion and reason are true and the reason is the correct explanation of the assertion. (B) If both assertion and reason are true but reason is not be correct explanation of assertion. (C) If assertion is true but reason is false. (D) If the assertion and reason both are false. Assertion: The total translation kinetic energy of all the molecules of a given mass of an ideal gas is \(1.5\) times the product of its Pressure and its volume. Reason: The molecules of a gas collide with each other and velocities of the molecules change due to the collision (A) D (B) \(\mathrm{C}\) (C) A (D) B

An ideal gas at \(27 \mathrm{C}\) is Compressed adiabatically, to \(\\{8 / 27\\}\) of its original Volume. If \(\mathrm{v}=(5 / 3)\), then the rise in temperature is (A) \(225 \mathrm{k}\) (B) \(450 \mathrm{~K}\) (C) \(375 \mathrm{~K}\) (D) \(405 \mathrm{~K}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free