Chapter 8: Problem 1086
The temperature of a substance increases by \(27^{\circ} \mathrm{C}\) What is the value of this increase of Kelvin scale? (A) \(300 \mathrm{~K}\) (B) \(2-46 \mathrm{~K}\) (C) \(7 \mathrm{~K}\) (D) \(27 \mathrm{~K}\)
Chapter 8: Problem 1086
The temperature of a substance increases by \(27^{\circ} \mathrm{C}\) What is the value of this increase of Kelvin scale? (A) \(300 \mathrm{~K}\) (B) \(2-46 \mathrm{~K}\) (C) \(7 \mathrm{~K}\) (D) \(27 \mathrm{~K}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA gas mixture consists of 2 mole of oxygen and 4 mole of argon at temperature \(\mathrm{T}\). Neglecting all vibrational modes, the total internal energy of the system is (A) \(11 \mathrm{RT}\) (B) \(9 \mathrm{RT}\) (C) \(15 \mathrm{RT}\) (D) \(4 \mathrm{RT}\)
A Carnot engine operating between temperature \(\mathrm{T}_{1}\) and \(\mathrm{T}_{2}\) has efficiency \(0.4\), when \(\mathrm{T}_{2}\) lowered by $50 \mathrm{~K}\(, its efficiency increases to \)0.5\(. Then \)\mathrm{T}_{1}$ and \(\mathrm{T}_{2}\) are respectively. (A) \(300 \mathrm{~K}\) and \(100 \mathrm{~K}\) (B) \(400 \mathrm{~K}\) and \(200 \mathrm{~K}\) (C) \(600 \mathrm{~K}\) and \(400 \mathrm{~K}\) (D) \(500 \mathrm{~K}\) and \(300 \mathrm{~K}\)
An ideal gas heat engine is operating between \(227^{\circ} \mathrm{C}\) and \(127^{\circ} \mathrm{C}\). It absorbs \(10^{4} \mathrm{~J}\) Of heat at the higher temperature. The amount of heat Converted into. work is \(\ldots \ldots\) J. (A)2000 (B) 4000 (C) 5600 (D) 8000
Instructions:Read the assertion and reason carefully to mask the correct option out of the options given below. (A) If both assertion and reason are true and the reason is the correct explanation of the assertion. (B) If both assertion and reason are true but reason is not be correct explanation of assertion. (C) If assertion is true but reason is false. (D) If the assertion and reason both are false. Assertion: The total translation kinetic energy of all the molecules of a given mass of an ideal gas is \(1.5\) times the product of its Pressure and its volume. Reason: The molecules of a gas collide with each other and velocities of the molecules change due to the collision (A) D (B) \(\mathrm{C}\) (C) A (D) B
An ideal gas at \(27 \mathrm{C}\) is Compressed adiabatically, to \(\\{8 / 27\\}\) of its original Volume. If \(\mathrm{v}=(5 / 3)\), then the rise in temperature is (A) \(225 \mathrm{k}\) (B) \(450 \mathrm{~K}\) (C) \(375 \mathrm{~K}\) (D) \(405 \mathrm{~K}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.