Chapter 8: Problem 1084
A difference of temperature of \(25^{\circ} \mathrm{Cis}\) equivalent to a difference of (A) \(72^{\circ} \mathrm{F}\) (B) \(45^{\circ} \mathrm{F}\) (C) \(32^{\circ} \mathrm{F}\) (D) \(25^{\circ} \mathrm{F}\)
Chapter 8: Problem 1084
A difference of temperature of \(25^{\circ} \mathrm{Cis}\) equivalent to a difference of (A) \(72^{\circ} \mathrm{F}\) (B) \(45^{\circ} \mathrm{F}\) (C) \(32^{\circ} \mathrm{F}\) (D) \(25^{\circ} \mathrm{F}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeThe efficiency of Carnot's engine operating between reservoirs, maintained at temperature \(27^{\circ} \mathrm{C}\) and \(-123^{\circ} \mathrm{C}\) is (A) \(0.5\) (B) \(0.4\) (C) \(0.6\) (D) \(0.25\)
If a heat engine absorbs \(50 \mathrm{KJ}\) heat from a heat source and has efficiency of \(40 \%\), then the heat released by it in heat sink is (A) \(40 \mathrm{KJ}\) (B) \(30 \mathrm{KJ}\) (C) \(20 \mathrm{~J}\) (D) \(20 \mathrm{KJ}\)
If a heat engine absorbs \(2 \mathrm{KJ}\) heat from a heat source and release \(1.5 \mathrm{KJ}\) heat into cold reservoir, then its efficiency is (A) \(0.5 \%\) (B) \(75 \%\) (C) \(25 \%\) (D) \(50 \%\)
Work done per mole in an isothermal ? change is (A) RT log \(_{e}\left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)\) (B) \(\mathrm{RT} \log _{10}\left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)\) (C) RT \(\log _{10}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)\) (D) RT \(\log _{\mathrm{e}}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)\)
An insulated contains containing monoatomic gas of moles mass \(\mathrm{M}_{0}\) is moving with a velocity, \(\mathrm{V}\). If the container is suddenly stopped, find the change in temperature. (A) \(\left\\{\left(M_{0} V^{2}\right) /(5 R)\right\\}\) (B) $\left\\{\left(\mathrm{M}_{0} \mathrm{~V}^{2}\right) /(4 \mathrm{R})\right\\}$ (C) $\left\\{\left(\mathrm{M}_{0} \mathrm{~V}^{2}\right) /(3 \mathrm{R})\right\\}$ (D) $\left\\{\left(\mathrm{M}_{0} \mathrm{~V}^{2}\right) /(2 \mathrm{R})\right\\}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.