Chapter 7: Problem 1017
When liquid medicine of density \(\mathrm{S}\) is to be put in the eye. It is done with the help of a dropper as the bulb on the top of the dropper is pressed a drop forms at the opening of the dropper we wish to estimate the size of the drop. We dirst assume that the drop formed at the opening is spherical because the requires a minimum increase in its surface energy. To determine the size we calculate the net vertical force due to surface tension \(\mathrm{T}\) when the radius of the drop is \(\mathrm{R}\). When this force becomes smaller than the weight of the drop the drop gets detached from the dropper. If \(\mathrm{r}=5 \times 10^{-4} \mathrm{~m}, \mathrm{p}=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}=10 \mathrm{~ms}^{-2} \mathrm{~T}=0.11 \mathrm{~N} \mathrm{~m}^{-1}\) the radius of the drop when it detaches from the dropper is approximately (A) \(1.4 \times 10^{-3} \mathrm{~m}\) (B) \(3.3 \times 10^{-3} \mathrm{~m}\) (C) \(2.0 \times 10^{-3} \mathrm{~m}\) (D) \(4.1 \times 10^{-3} \mathrm{~m}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.