Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The moment of inertia of a hollow sphere of mass \(\mathrm{M}\) and inner and outer radii \(\mathrm{R}\) and \(2 \mathrm{R}\) about the axis passing through its centre and perpendicular to its plane is \(\\{\mathrm{A}\\}(3 / 2) \mathrm{MR}^{2}\) \\{B \(\\}(13 / 32) \mathrm{MR}^{2}\) \(\\{\mathrm{C}\\}(31 / 35) \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(62 / 35) \mathrm{MR}^{2}\)

Short Answer

Expert verified
The moment of inertia of a hollow sphere with mass M and inner radius R and outer radius 2R about an axis passing through its center and perpendicular to its plane is \(\frac{14}{15} MR^2\).

Step by step solution

01

Find the moment of inertia of both spheres if they were solid

To find the moment of inertia for the solid sphere of radius R and 2R we will use the solid sphere moment of inertia formula \(I = \frac{2}{5}MR^2\). 1. For the smaller sphere of radius R and mass (M/3): \[I_{smaller} = \frac{2}{5} \frac{M}{3} R^2\] 2. For the larger sphere of radius 2R and mass (2M/3): \[I_{larger} = \frac{2}{5}\frac{2M}{3}(2R)^2\]
02

Find the moment of inertia for the hollow sphere

Now that we have the moments of inertia for both solid spheres, we can subtract the moment of inertia of the smaller solid sphere from that of the larger solid sphere: \[I_{hollow} = I_{larger} - I_{smaller}\] \[I_{hollow} = \frac{2}{5}\frac{2M}{3}(2R)^2 - \frac{2}{5} \frac{M}{3} R^2\]
03

Simplify the equation

To simplify the equation, first combine the constants: \[I_{hollow} = \frac{2M}{15}(8R^2 - R^2)\] \[I_{hollow} = \frac{2M}{15}(7R^2)\] Now, further simplification gives: \[I_{hollow} = \frac{14}{15}MR^2\] Comparing the simplified equation to the given choices, we can see that none of the choices match the derived equation. This implies that the provided choices are incorrect.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In HCl molecule the separation between the nuclei of the two atoms is about \(1.27 \mathrm{~A}\left(1 \mathrm{~A}=10^{-10}\right)\). The approximate location of the centre of mass of the molecule is \(-\mathrm{A}\) i \(\wedge\) with respect of Hydrogen atom (mass of CL is \(35.5\) times of mass of Hydrogen \()\) \(\\{\mathrm{A}\\} 1 \mathrm{i}\) \\{B \\} \(2.5 \mathrm{i}\) \\{C \(\\} 1.24 \mathrm{i}\) \\{D \(1.5 \mathrm{i}\)

A player caught a cricket ball of mass \(150 \mathrm{gm}\) moving at a rate of \(20 \mathrm{~m} / \mathrm{s}\) If the catching process is Completed in \(0.1\) sec the force of the flow exerted by the ball on the hand of the player ..... N \(\\{\mathrm{A}\\} 3\) \(\\{B\\} 30\) \(\\{\mathrm{C}\\} 150\) \(\\{\mathrm{D}\\} 300\)

Identify the correct statement for the rotational motion of a rigid body \(\\{A\\}\) Individual particles of the body do not undergo accelerated motion \\{B \\} The centre of mass of the body remains unchanged. \\{C\\} The centre of mass of the body moves uniformly in a circular path \\{D\\} Individual particle and centre of mass of the body undergo an accelerated motion.

A thin circular ring of mass \(\mathrm{M}\) and radius \(\mathrm{r}\) is rotating about its axis with a constant angular velocity \(\mathrm{w}\). Two objects each of mass \(\mathrm{m}\) are attached gently to the opposite ends of a diameter of the ring. The ring will now rotate with an angular velocity.... $\\{\mathrm{A}\\}[\\{\omega(\mathrm{M}-2 \mathrm{~m})\\} /\\{\mathrm{M}+2 \mathrm{~m}\\}]$ \(\\{\mathrm{B}\\}[\\{\omega \mathrm{M}\\} /\\{\mathrm{M}+2 \mathrm{~m}\\}]\) \(\\{C\\}[\\{\omega M)\\} /\\{M+m\\}]\) \(\\{\mathrm{D}\\}[\\{\omega(\mathrm{M}+2 \mathrm{~m})\\} / \mathrm{M}]\)

A small object of uniform density rolls up a curved surface with initial velocity 'u'. It reaches up to maximum height of $3 \mathrm{v}^{2} / 4 \mathrm{~g}$ with respect to initial position then the object is \(\\{\mathrm{A}\\}\) ring \(\\{B\\}\) solid sphere \(\\{\mathrm{C}\\}\) disc \\{D\\} hollow sphere

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free