Chapter 5: Problem 660
A circular disc of radius \(R\) is free to oscillate about an axis passing through a point on its rim and perpendicular to its plane. The disc is turned through an angle of \(60 ?\) and released. Its angular velocity when it reaches the equilibrium position will be \(\\{\mathrm{A}\\} \sqrt{(\mathrm{g} / 3 \mathrm{R})}\) \(\\{\mathrm{B}\\} \sqrt{(2 \mathrm{~g} / 3 \mathrm{R})}\) \(\\{\mathrm{C}\\} \sqrt{(2 \mathrm{~g} / \mathrm{R})}\) \(\\{\mathrm{D}\\} 2 \sqrt{(2 \mathrm{~g} / \mathrm{R})}\)