Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circular disc of mass \(\mathrm{m}\) and radius \(\mathrm{r}\) is rolling on a smooth horizontal surface with a constant speed v. Its kinetic energy is \(\\{\mathrm{A}\\}(1 / 4) \mathrm{mv}^{2}\) \(\\{\mathrm{B}\\}(1 / 2) \mathrm{mv}^{2}\) \(\\{\mathrm{C}\\}(3 / 4) \mathrm{mv}^{2}\) \(\\{\mathrm{D}\\} \mathrm{mv}^{2}\)

Short Answer

Expert verified
The total kinetic energy of the circular disc is \(\frac{3}{4}mv^2\). Hence, the correct answer is \(\boxed{\text{C} (3 / 4) \mathrm{mv}^{2}}\).

Step by step solution

01

Identify the given variables.

In this problem, we are given the following variables: 1. Mass of the circular disc (m) 2. Radius of the circular disc (r) 3. Constant speed of the circular disc (v)
02

Calculate the translational kinetic energy.

The translational kinetic energy of the disc, moving with a constant speed v, is given by the formula: Translational Kinetic Energy = \( \frac{1}{2} * m * v^2 \)
03

Calculate the rotational kinetic energy.

For a rolling object, the moment of inertia (I) for a circular disc about its center of mass is given by the formula: Moment of Inertia (I) = \( \frac{1}{2} * m * r^2 \) The rotational kinetic energy is given by the formula: Rotational Kinetic Energy = \( \frac{1}{2} * I * ω^2 \) Since we are given the constant speed (v) and we know that the object is rolling without slipping, we can find the angular velocity (ω) using the formula: \( ω = \frac{v}{r} \) Now we plug the values into the rotational kinetic energy formula: Rotational Kinetic Energy = \( \frac{1}{2} * (\frac{1}{2} * m * r^2) * (\frac{v}{r})^2 \) Simplify the equation: Rotational Kinetic Energy = \( \frac{1}{4} * m * v^2 \)
04

Calculate the total kinetic energy.

Now we can find the total kinetic energy by summing both the translational and rotational kinetic energies: Total Kinetic Energy = Translational Kinetic Energy + Rotational Kinetic Energy Total Kinetic Energy = \( (\frac{1}{2} * m * v^2) + (\frac{1}{4} * m * v^2) \) Total Kinetic Energy = \( (\frac{3}{4} * m * v^2) \)
05

Find the correct answer choice.

Now we have the total kinetic energy of the circular disc as \( (\frac{3}{4} * m * v^2) \). Looking at the given options, the correct answer is: \(\boxed{\text{C} (3 / 4) \mathrm{mv}^{2}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A circular disc of radius \(\mathrm{R}\) and thickness \(\mathrm{R} / 6\) has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and re-casted in to a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is \(\ldots\) \(\\{\mathrm{A}\\} \mathrm{I}\) \(\\{\mathrm{B}\\}(2 \mathrm{I} / 8)\) \(\\{\mathrm{C}\\}(\mathrm{I} / 5)\) \(\\{\mathrm{D}\\}(\mathrm{I} / 10)\)

A small object of uniform density rolls up a curved surface with initial velocity 'u'. It reaches up to maximum height of $3 \mathrm{v}^{2} / 4 \mathrm{~g}$ with respect to initial position then the object is \(\\{\mathrm{A}\\}\) ring \(\\{B\\}\) solid sphere \(\\{\mathrm{C}\\}\) disc \\{D\\} hollow sphere

A mass \(\mathrm{m}\) is moving with a constant velocity along the line parallel to the \(\mathrm{x}\) -axis, away from the origin. Its angular momentum with respect to the origin \(\\{\mathrm{A}\\}\) Zero \\{B \\} remains constant \(\\{\mathrm{C}\\}\) goes on increasing \\{D\\} goes on decreasing

The height of a solid cylinder is four times that of its radius. It is kept vertically at time \(t=0\) on a belt which is moving in the horizontal direction with a velocity \(\mathrm{v}=2.45 \mathrm{t}^{2}\) where \(\mathrm{v}\) in \(\mathrm{m} / \mathrm{s}\) and \(t\) is in second. If the cylinder does not slip, it will topple over a time \(t=\) \(\\{\mathrm{A}\\} 1\) second \(\\{\mathrm{B}\\} 2\) second \\{C \(\\}\) \\} second \(\\{\mathrm{D}\\} 4\) second

Match list I with list II and select the correct answer $$ \begin{aligned} &\begin{array}{|l|l|} \hline \text { List-I } & \begin{array}{l} \text { List - II } \\ \text { System } \end{array} & \text { Moment of inertia } \\ \hline \text { (x) A ring about it axis } & \text { (1) }\left(\mathrm{MR}^{2} / 2\right) \\ \hline \text { (y) A uniform circular disc about it axis } & \text { (2) }(2 / 5) \mathrm{MR}^{2} \\ \hline \text { (z) A solid sphere about any diameter } & \text { (3) }(7 / 5) \mathrm{MR}^{2} \\ \hline \text { (w) A solid sphere about any tangent } & \text { (4) } \mathrm{MR}^{2} \\ \cline { 2 } & \text { (5) }(9 / 5) \mathrm{MR}^{2} \\ \hline \end{array}\\\ &\text { Select correct option }\\\ &\begin{array}{|l|l|l|l|l|} \hline \text { Option? } & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{W} \\\ \hline\\{\mathrm{A}\\} & 2 & 1 & 3 & 4 \\ \hline\\{\mathrm{B}\\} & 4 & 3 & 2 & 5 \\ \hline\\{\mathrm{C}\\} & 1 & 5 & 4 & 3 \\ \hline\\{\mathrm{D}\\} & 4 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned} $$

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free