Chapter 5: Problem 649
A solid cylinder of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) rolls down an inclined plane of height \(\mathrm{h}\). The angular velocity of the cylinder when it reaches the bottom of the plane will be. \(\\{\mathrm{A}\\}(2 / \mathrm{R}) \sqrt{(\mathrm{gh})}\) \(\\{\mathrm{B}\\}(2 / \mathrm{R}) \sqrt{(\mathrm{gh} / 2)}\) \(\\{\mathrm{C}\\}(2 / \mathrm{R}) \sqrt{(\mathrm{gh} / 3)}\) \(\\{\mathrm{D}\\}(1 / 2 \mathrm{R}) \sqrt{(\mathrm{gh})}\)