Chapter 5: Problem 627
Let \(\mathrm{Er}\) is the rotational kinetic energy and \(\mathrm{L}\) is angular momentum then the graph between \(\log \mathrm{e}^{\mathrm{Er}}\) and $\log \mathrm{e}^{\mathrm{L}}$ can be
Chapter 5: Problem 627
Let \(\mathrm{Er}\) is the rotational kinetic energy and \(\mathrm{L}\) is angular momentum then the graph between \(\log \mathrm{e}^{\mathrm{Er}}\) and $\log \mathrm{e}^{\mathrm{L}}$ can be
All the tools & learning materials you need for study success - in one app.
Get started for freeMatch list I with list II and select the correct answer $$ \begin{aligned} &\begin{array}{|l|l|} \hline \text { List-I } & \begin{array}{l} \text { List - II } \\ \text { System } \end{array} & \text { Moment of inertia } \\ \hline \text { (x) A ring about it axis } & \text { (1) }\left(\mathrm{MR}^{2} / 2\right) \\ \hline \text { (y) A uniform circular disc about it axis } & \text { (2) }(2 / 5) \mathrm{MR}^{2} \\ \hline \text { (z) A solid sphere about any diameter } & \text { (3) }(7 / 5) \mathrm{MR}^{2} \\ \hline \text { (w) A solid sphere about any tangent } & \text { (4) } \mathrm{MR}^{2} \\ \cline { 2 } & \text { (5) }(9 / 5) \mathrm{MR}^{2} \\ \hline \end{array}\\\ &\text { Select correct option }\\\ &\begin{array}{|l|l|l|l|l|} \hline \text { Option? } & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{W} \\\ \hline\\{\mathrm{A}\\} & 2 & 1 & 3 & 4 \\ \hline\\{\mathrm{B}\\} & 4 & 3 & 2 & 5 \\ \hline\\{\mathrm{C}\\} & 1 & 5 & 4 & 3 \\ \hline\\{\mathrm{D}\\} & 4 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned} $$
Statement \(-1-\) A thin uniform rod \(A B\) of mass \(M\) and length \(\mathrm{L}\) is hinged at one end \(\mathrm{A}\) to the horizontal floor initially it stands vertically. It is allowed to fall freely on the floor in the vertical plane, The angular velocity of the rod when its ends \(B\) strikes the floor $\sqrt{(3 g / L)}\( Statement \)-2$ - The angular momentum of the rod about the hinge remains constant throughout its fall to the floor. \(\\{\mathrm{A}\\}\) Statement \(-1\) is correct (true), Statement \(-2\) is true and Statement- 2 is correct explanation for Statement - 1 \\{B \\} Statement \(-1\) is true, statement \(-2\) is true but statement- 2 is not the correct explanation four statement \(-1\). \\{C\\} Statement \(-1\) is true, statement- 2 is false \\{D \(\\}\) Statement- 2 is false, statement \(-2\) is true
A constant torque of \(1500 \mathrm{Nm}\) turns a wheel of moment of inertia \(300 \mathrm{~kg} \mathrm{~m}^{2}\) about an axis passing through its centre the angular velocity of the wheel after 3 sec will be.......... $\mathrm{rad} / \mathrm{sec}$ \(\\{\mathrm{A}\\} 5\) \\{B \\} 10 \(\\{C\\} 15\) \(\\{\mathrm{D}\\} 20\)
The moment of inertia of a thin rod of mass \(\mathrm{M}\) and length \(\mathrm{L}\) about an axis passing through the point at a distance $\mathrm{L} / 4$ from one of its ends and perpendicular to the rod is \(\\{\mathrm{A}\\}\left[\left(7 \mathrm{ML}^{2}\right) / 48\right]\) \\{B \\} [ \(\left[\mathrm{ML}^{2} / 12\right]\) \(\\{\mathrm{C}\\}\left[\left(\mathrm{ML}^{2} / 9\right]\right.\) \(\\{\mathrm{D}\\}\left[\left(\mathrm{ML}^{2} / 3\right]\right.\)
A body of mass \(\mathrm{m}\) is tied to one end of spring and whirled round in a horizontal plane with a constant angular velocity. The elongation in the spring is one centimetre. If the angular velocity is doubted, the elongation in the spring is \(5 \mathrm{~cm}\). The original length of spring is... \(\\{\mathrm{A}\\} 16 \mathrm{~cm}\) \(\\{B\\} 15 \mathrm{~cm}\) \(\\{\mathrm{C}\\} 14 \mathrm{~cm}\) \(\\{\mathrm{D}\\} 13 \mathrm{~cm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.