Chapter 5: Problem 623
Moment of inertia of a sphere of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) is \(\mathrm{I}\). keeping mass constant if graph is plotted between \(\mathrm{I}\) and \(\mathrm{R}\) then its form would be.
Chapter 5: Problem 623
Moment of inertia of a sphere of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) is \(\mathrm{I}\). keeping mass constant if graph is plotted between \(\mathrm{I}\) and \(\mathrm{R}\) then its form would be.
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo discs of the same material and thickness have radii \(0.2 \mathrm{~m}\) and \(0.6 \mathrm{~m}\) their moment of inertia about their axes will be in the ratio \(\\{\mathrm{A}\\} 1: 81\) \(\\{\mathrm{B}\\} 1: 27\) \(\\{C\\} 1: 9\) \(\\{\mathrm{D}\\} 1: 3\)
The M.I of a disc of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) about an axis passing through the centre \(\mathrm{O}\) and perpendicular to the plane of disc is \(\left(\mathrm{MR}^{2} / 2\right)\). If one quarter of the disc is removed the new moment of inertia of disc will be..... \(\\{\mathrm{A}\\}\left(\mathrm{MR}^{2} / 3\right)\) \(\\{B\\}\left(M R^{2} / 4\right)\) \(\\{\mathrm{C}\\}(3 / 8) \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(3 / 2) \mathrm{MR}^{2}\)
A ring of mass \(\mathrm{M}\) and radius \(\mathrm{r}\) is melted and then molded in to a sphere then the moment of inertia of the sphere will be..... \(\\{\mathrm{A}\\}\) more than that of the ring \\{B \\} Less than that of the ring \(\\{\mathrm{C}\\}\) Equal to that of the ring \\{D\\} None of these
A straight rod of length \(L\) has one of its ends at the origin and the other end at \(\mathrm{x}=\mathrm{L}\) If the mass per unit length of rod is given by Ax where \(A\) is constant where is its centre of mass. \(\\{\mathrm{A}\\} \mathrm{L} / 3\) \(\\{\mathrm{B}\\} \mathrm{L} / 2\) \(\\{\mathrm{C}\\} 2 \mathrm{~L} / 3\) \(\\{\mathrm{D}\\} 3 \mathrm{~L} / 4\)
The height of a solid cylinder is four times that of its radius. It is kept vertically at time \(t=0\) on a belt which is moving in the horizontal direction with a velocity \(\mathrm{v}=2.45 \mathrm{t}^{2}\) where \(\mathrm{v}\) in \(\mathrm{m} / \mathrm{s}\) and \(t\) is in second. If the cylinder does not slip, it will topple over a time \(t=\) \(\\{\mathrm{A}\\} 1\) second \(\\{\mathrm{B}\\} 2\) second \\{C \(\\}\) \\} second \(\\{\mathrm{D}\\} 4\) second
What do you think about this solution?
We value your feedback to improve our textbook solutions.