Chapter 5: Problem 619
A spherical ball rolls on a table without slipping, then the fraction of its total energy associated with rotation is \(\\{\mathrm{A}\\} 2 / 5\) \\{B \\} \(3 / 5\) \(\\{\mathrm{C}\\} 2 / 7\) \(\\{\mathrm{D}\\} 3 / 7\)
Chapter 5: Problem 619
A spherical ball rolls on a table without slipping, then the fraction of its total energy associated with rotation is \(\\{\mathrm{A}\\} 2 / 5\) \\{B \\} \(3 / 5\) \(\\{\mathrm{C}\\} 2 / 7\) \(\\{\mathrm{D}\\} 3 / 7\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFrom a circular disc of radius \(\mathrm{R}\) and mass \(9 \mathrm{M}\), a small disc of radius \(\mathrm{R} / 3\) is removed from the disc. The moment of inertia of the remaining portion about an axis perpendicular to the plane of the disc and passing through \(\mathrm{O}\) is.... \(\\{\mathrm{A}\\} 4 \mathrm{MR}^{2}\) \(\\{\mathrm{B}\\}(40 / 9) \mathrm{MR}^{2}\) \(\\{\mathrm{C}\\} 10 \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(37 / 9) \mathrm{MR}^{2}\)
Statement \(-1\) -If the cylinder rolling with angular speed- w. suddenly breaks up in to two equal halves of the same radius. The angular speed of each piece becomes \(2 \mathrm{w}\). Statement \(-2\) - If no external torque outs, the angular momentum of the system is conserved. \(\\{\mathrm{A}\\}\) Statement \(-1\) is correct (true), Statement \(-2\) is true and Statement- 2 is correct explanation for Statement \(-1\) \(\\{\mathrm{B}\\}\) Statement \(-1\) is true, statement \(-2\) is true but statement- 2 is not the correct explanation four statement \(-1 .\) \(\\{\mathrm{C}\\}\) Statement \(-1\) is true, statement- 2 is false \\{D \(\\}\) Statement- 2 is false, statement \(-2\) is true
A car is moving at a speed of \(72 \mathrm{~km} / \mathrm{hr}\) the radius of its wheel is \(0.25 \mathrm{~m}\). If the wheels are stopped in 20 rotations after applying breaks then angular retardation produced by the breaks is \(\ldots .\) \(\\{\mathrm{A}\\}-25.5 \mathrm{rad} / \mathrm{s}^{2}\) \(\\{\mathrm{B}\\}-29.52 \mathrm{rad} / \mathrm{s}^{2}\) \(\\{\mathrm{C}\\}-33.52 \mathrm{rad} / \mathrm{s}^{2}\) \(\\{\mathrm{D}\\}-45.52 \mathrm{rad} / \mathrm{s}^{2}\)
Match list I with list II and select the correct answer $$ \begin{aligned} &\begin{array}{|l|l|} \hline \text { List-I } & \begin{array}{l} \text { List - II } \\ \text { System } \end{array} & \text { Moment of inertia } \\ \hline \text { (x) A ring about it axis } & \text { (1) }\left(\mathrm{MR}^{2} / 2\right) \\ \hline \text { (y) A uniform circular disc about it axis } & \text { (2) }(2 / 5) \mathrm{MR}^{2} \\ \hline \text { (z) A solid sphere about any diameter } & \text { (3) }(7 / 5) \mathrm{MR}^{2} \\ \hline \text { (w) A solid sphere about any tangent } & \text { (4) } \mathrm{MR}^{2} \\ \cline { 2 } & \text { (5) }(9 / 5) \mathrm{MR}^{2} \\ \hline \end{array}\\\ &\text { Select correct option }\\\ &\begin{array}{|l|l|l|l|l|} \hline \text { Option? } & \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{W} \\\ \hline\\{\mathrm{A}\\} & 2 & 1 & 3 & 4 \\ \hline\\{\mathrm{B}\\} & 4 & 3 & 2 & 5 \\ \hline\\{\mathrm{C}\\} & 1 & 5 & 4 & 3 \\ \hline\\{\mathrm{D}\\} & 4 & 1 & 2 & 3 \\ \hline \end{array} \end{aligned} $$
Two identical hollow spheres of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) are joined together and the combination is rotated about an axis tangential to one sphere and perpendicular to the line connecting their centres. The moment of inertia of the combination is \(\\{\mathrm{A}\\} 10 \mathrm{MR}^{2}\) \(\\{\mathrm{B}\\}(4 / 3) \mathrm{MR}^{2}\) \(\\{\mathrm{C}\\}(32 / 3) \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(34 / 3) \mathrm{MR}^{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.