Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A constant torque of \(1500 \mathrm{Nm}\) turns a wheel of moment of inertia \(300 \mathrm{~kg} \mathrm{~m}^{2}\) about an axis passing through its centre the angular velocity of the wheel after 3 sec will be.......... $\mathrm{rad} / \mathrm{sec}$ \(\\{\mathrm{A}\\} 5\) \\{B \\} 10 \(\\{C\\} 15\) \(\\{\mathrm{D}\\} 20\)

Short Answer

Expert verified
The final angular velocity of the wheel after 3 seconds is 15 rad/s. Therefore, the correct answer is \( \boxed{\textbf{C } 15} \) rad/s.

Step by step solution

01

Calculate angular acceleration

To find out the angular acceleration (α), we can use the formula: α = torque/moment of inertia Given torque, T = 1500 Nm and moment of inertia, I = 300 kg m², the angular acceleration can be calculated as follows: α = \( \frac{1500}{300} \)
02

Simplify the angular acceleration

Now we need to simplify the expression for angular acceleration. α = \( \frac{1500}{300} \) = 5 rad/s² The angular acceleration is 5 rad/s².
03

Determine the initial angular velocity

We haven't been given any information about the initial angular velocity (ω₀) of the wheel in the question. So, let's assume the wheel is initially at rest which means the initial angular velocity ω₀ = 0 rad/s.
04

Calculate the final angular velocity after 3 seconds

To find the final angular velocity (ω) after 3 seconds, we can use the formula: ω = ω₀ + αt We know ω₀ = 0 rad/s, α = 5 rad/s², and time t = 3 seconds. We can now plug in these values into the equation: ω = 0 + (5 × 3)
05

Simplify the final angular velocity expression

Now, we will simplify the expression to calculate the final angular velocity: ω = 0 + (5 × 3) = 0 + 15 = 15 rad/s The final angular velocity of the wheel after 3 seconds is 15 rad/s. So, the correct answer is \( \boxed{\textbf{C } 15} \) rad/s.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A body of mass \(\mathrm{m}\) is tied to one end of spring and whirled round in a horizontal plane with a constant angular velocity. The elongation in the spring is one centimetre. If the angular velocity is doubted, the elongation in the spring is \(5 \mathrm{~cm}\). The original length of spring is... \(\\{\mathrm{A}\\} 16 \mathrm{~cm}\) \(\\{B\\} 15 \mathrm{~cm}\) \(\\{\mathrm{C}\\} 14 \mathrm{~cm}\) \(\\{\mathrm{D}\\} 13 \mathrm{~cm}\)

Initial angular velocity of a circular disc of mass \(\mathrm{M}\) is \(\omega_{1}\) Then two spheres of mass \(\mathrm{m}\) are attached gently two diametrically opposite points on the edge of the disc what is the final angular velocity of the disc? \(\\{\mathrm{A}\\}[(\mathrm{M}+\mathrm{m}) / \mathrm{M}] \omega_{1}\) \(\\{\mathrm{B}\\}[(\mathrm{M}+4 \mathrm{~m}) / \mathrm{M}] \omega_{1}\) \(\\{\mathrm{C}\\}[\mathrm{M} /(\mathrm{M}+4 \mathrm{~m})] \omega_{1}\) \\{D\\} \([\mathrm{M} /(\mathrm{M}+2 \mathrm{~m})] \omega_{1}\)

A rod of length L rotate about an axis passing through its centre and normal to its length with an angular velocity \(\omega\). If A is the cross-section and \(D\) is the density of material of rod. Find its rotational $\mathrm{K} . \mathrm{E}$. \(\\{\mathrm{A}\\}(1 / 2) \mathrm{AL}^{3} \mathrm{D} \omega^{2}\) \\{B \(\\}(1 / 6) \mathrm{AL}^{3} \mathrm{D} \omega^{2}\) \(\\{C\\}(1 / 24) A L^{3} D \omega^{2}\) \(\\{\mathrm{D}\\}(1 / 12) \mathrm{AL}^{3} \mathrm{D} \omega^{2}\)

A circular disc of radius \(R\) is free to oscillate about an axis passing through a point on its rim and perpendicular to its plane. The disc is turned through an angle of \(60 ?\) and released. Its angular velocity when it reaches the equilibrium position will be \(\\{\mathrm{A}\\} \sqrt{(\mathrm{g} / 3 \mathrm{R})}\) \(\\{\mathrm{B}\\} \sqrt{(2 \mathrm{~g} / 3 \mathrm{R})}\) \(\\{\mathrm{C}\\} \sqrt{(2 \mathrm{~g} / \mathrm{R})}\) \(\\{\mathrm{D}\\} 2 \sqrt{(2 \mathrm{~g} / \mathrm{R})}\)

Two spheres each of mass \(\mathrm{M}\) and radius \(\mathrm{R} / 2\) are connected with a mass less rod of length \(2 \mathrm{R}\) as shown in figure. What will be moment of inertia of the system about an axis passing through centre of one of the spheres and perpendicular to the rod? \(\\{\mathrm{A}\\}(21 / 5) \mathrm{MR}^{2}\) \(\\{\mathrm{B}\\}(2 / 5) \mathrm{MR}^{2}\) \(\\{\mathrm{C}\\}(5 / 2) \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(5 / 21) \mathrm{MR}^{2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free