Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The M.I of a disc of mass \(\mathrm{M}\) and radius \(\mathrm{R}\) about an axis passing through the centre \(\mathrm{O}\) and perpendicular to the plane of disc is \(\left(\mathrm{MR}^{2} / 2\right)\). If one quarter of the disc is removed the new moment of inertia of disc will be..... \(\\{\mathrm{A}\\}\left(\mathrm{MR}^{2} / 3\right)\) \(\\{B\\}\left(M R^{2} / 4\right)\) \(\\{\mathrm{C}\\}(3 / 8) \mathrm{MR}^{2}\) \(\\{\mathrm{D}\\}(3 / 2) \mathrm{MR}^{2}\)

Short Answer

Expert verified
The new moment of inertia of the disc after one quarter has been removed is \(I' = \frac{3MR^2}{8}\).

Step by step solution

01

Moment of Inertia of Full Disc

The initial moment of inertia (I) of the full disc with mass M and radius R is given by: \(I = \frac{MR^2}{2}\)
02

Determine the Mass and Radius of the Quarter Disc

Since one quarter of the disc is removed, the mass (m) and radius (r) of the removed quarter disc are: \(m = \frac{M}{4}\) (1/4th of the mass) \(r = R\) (radius remains the same)
03

Moment of Inertia of Quarter Disc

The moment of inertia (i) of the removed quarter disc can be calculated using the same formula: \(i = \frac{mr^2}{2}\) Substitute the values of m and r: \(i = \frac{\left(\frac{M}{4}\right)R^2}{2}\)
04

Simplify the Moment of Inertia of Quarter Disc

Simplify the expression to get the moment of inertia of the quarter disc: \(i = \frac{MR^2}{8}\)
05

New Moment of Inertia of the Disc

The new moment of inertia (I') of the remaining disc can be obtained by subtracting the quarter disc's moment of inertia from the full disc's moment of inertia: \(I' = I - i\) substitute the values: \(I' = \frac{MR^2}{2} - \frac{MR^2}{8}\)
06

Simplify the New Moment of Inertia of the Disc

Simplify the expression to get the new moment of inertia of the disc: \(I' = \frac{4MR^2 - MR^2}{8}\) \(I' = \frac{3MR^2}{8}\)
07

Match with the Correct Option

Now, match the obtained new moment of inertia with the given options: The new moment of inertia of the disc is \(\frac{3MR^2}{8}\), which matches with option C. Therefore, the correct answer is option C. \(I' = \frac{3MR^2}{8}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A circular disc of radius \(\mathrm{R}\) and thickness \(\mathrm{R} / 6\) has moment of inertia I about an axis passing through its centre and perpendicular to its plane. It is melted and re-casted in to a solid sphere. The moment of inertia of the sphere about its diameter as axis of rotation is \(\ldots\) \(\\{\mathrm{A}\\} \mathrm{I}\) \(\\{\mathrm{B}\\}(2 \mathrm{I} / 8)\) \(\\{\mathrm{C}\\}(\mathrm{I} / 5)\) \(\\{\mathrm{D}\\}(\mathrm{I} / 10)\)

A cord is wound round the circumference of wheel of radius r. the axis of the wheel is horizontal and moment of inertia about it is I A weight \(\mathrm{mg}\) is attached to the end of the cord and falls from the rest. After falling through the distance \(\mathrm{h}\). the angular velocity of the wheel will be.... \(\\{B\\}\left[2 m g h /\left(I+m r^{2}\right)\right]\) $\\{\mathrm{C}\\}\left[2 \mathrm{mgh} /\left(\mathrm{I}+\mathrm{mr}^{2}\right)\right]^{1 / 2}$ \(\\{\mathrm{D}\\} \sqrt{(2 \mathrm{gh})}\)

The moment of inertia of a thin rod of mass \(\mathrm{M}\) and length \(\mathrm{L}\) about an axis passing through the point at a distance $\mathrm{L} / 4$ from one of its ends and perpendicular to the rod is \(\\{\mathrm{A}\\}\left[\left(7 \mathrm{ML}^{2}\right) / 48\right]\) \\{B \\} [ \(\left[\mathrm{ML}^{2} / 12\right]\) \(\\{\mathrm{C}\\}\left[\left(\mathrm{ML}^{2} / 9\right]\right.\) \(\\{\mathrm{D}\\}\left[\left(\mathrm{ML}^{2} / 3\right]\right.\)

A solid cylinder of mass \(\mathrm{M}\) and \(\mathrm{R}\) is mounted on a frictionless horizontal axle so that it can freely rotate about this axis. A string of negligible mass is wrapped round the cylinder and a body of mass \(\mathrm{m}\) is hung from the string as shown in figure the mass is released from rest then The angular speed of cylinder is proportional to \(\mathrm{h}^{\mathrm{n}}\), where \(\mathrm{h}\) is the height through which mass falls, Then the value of \(n\) is \(\\{\mathrm{A}\\}\) zero \(\\{\mathrm{B}\\} 1\) \(\\{\mathrm{C}\\}(1 / 2)\) \([\mathrm{D}] 2\)

A player caught a cricket ball of mass \(150 \mathrm{gm}\) moving at a rate of \(20 \mathrm{~m} / \mathrm{s}\) If the catching process is Completed in \(0.1\) sec the force of the flow exerted by the ball on the hand of the player ..... N \(\\{\mathrm{A}\\} 3\) \(\\{B\\} 30\) \(\\{\mathrm{C}\\} 150\) \(\\{\mathrm{D}\\} 300\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free